This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3prm | |- 3 e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z | |- 3 e. ZZ |
|
| 2 | 1lt3 | |- 1 < 3 |
|
| 3 | eluz2b1 | |- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 1 < 3 ) ) |
|
| 4 | 1 2 3 | mpbir2an | |- 3 e. ( ZZ>= ` 2 ) |
| 5 | elfz1eq | |- ( z e. ( 2 ... 2 ) -> z = 2 ) |
|
| 6 | n2dvds3 | |- -. 2 || 3 |
|
| 7 | breq1 | |- ( z = 2 -> ( z || 3 <-> 2 || 3 ) ) |
|
| 8 | 6 7 | mtbiri | |- ( z = 2 -> -. z || 3 ) |
| 9 | 5 8 | syl | |- ( z e. ( 2 ... 2 ) -> -. z || 3 ) |
| 10 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 11 | 10 | oveq2i | |- ( 2 ... ( 3 - 1 ) ) = ( 2 ... 2 ) |
| 12 | 9 11 | eleq2s | |- ( z e. ( 2 ... ( 3 - 1 ) ) -> -. z || 3 ) |
| 13 | 12 | rgen | |- A. z e. ( 2 ... ( 3 - 1 ) ) -. z || 3 |
| 14 | isprm3 | |- ( 3 e. Prime <-> ( 3 e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( 3 - 1 ) ) -. z || 3 ) ) |
|
| 15 | 4 13 14 | mpbir2an | |- 3 e. Prime |