This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element of a finite group is finite. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl2.1 | |- X = ( Base ` G ) |
|
| odcl2.2 | |- O = ( od ` G ) |
||
| Assertion | odcl2 | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl2.1 | |- X = ( Base ` G ) |
|
| 2 | odcl2.2 | |- O = ( od ` G ) |
|
| 3 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 4 | 3 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) e. NN0 ) |
| 5 | elnn0 | |- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
|
| 6 | 4 5 | sylib | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
| 7 | 6 | ord | |- ( ( G e. Grp /\ A e. X ) -> ( -. ( O ` A ) e. NN -> ( O ` A ) = 0 ) ) |
| 8 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 9 | eqid | |- ( x e. ZZ |-> ( x ( .g ` G ) A ) ) = ( x e. ZZ |-> ( x ( .g ` G ) A ) ) |
|
| 10 | 1 2 8 9 | odinf | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin ) |
| 11 | 1 2 8 9 | odf1 | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 <-> ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ -1-1-> X ) ) |
| 12 | 11 | biimp3a | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ -1-1-> X ) |
| 13 | f1f | |- ( ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ -1-1-> X -> ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ --> X ) |
|
| 14 | frn | |- ( ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ --> X -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) |
|
| 15 | ssfi | |- ( ( X e. Fin /\ ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X ) -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin ) |
|
| 16 | 15 | expcom | |- ( ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) C_ X -> ( X e. Fin -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin ) ) |
| 17 | 12 13 14 16 | 4syl | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( X e. Fin -> ran ( x e. ZZ |-> ( x ( .g ` G ) A ) ) e. Fin ) ) |
| 18 | 10 17 | mtod | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. X e. Fin ) |
| 19 | 18 | 3expia | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 -> -. X e. Fin ) ) |
| 20 | 7 19 | syld | |- ( ( G e. Grp /\ A e. X ) -> ( -. ( O ` A ) e. NN -> -. X e. Fin ) ) |
| 21 | 20 | con4d | |- ( ( G e. Grp /\ A e. X ) -> ( X e. Fin -> ( O ` A ) e. NN ) ) |
| 22 | 21 | 3impia | |- ( ( G e. Grp /\ A e. X /\ X e. Fin ) -> ( O ` A ) e. NN ) |
| 23 | 22 | 3com23 | |- ( ( G e. Grp /\ X e. Fin /\ A e. X ) -> ( O ` A ) e. NN ) |