This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | |- B = ( Base ` G ) |
|
| Assertion | prmcyg | |- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |- B = ( Base ` G ) |
|
| 2 | 1nprm | |- -. 1 e. Prime |
|
| 3 | simpr | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> B C_ { ( 0g ` G ) } ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | 1 4 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 6 | 5 | snssd | |- ( G e. Grp -> { ( 0g ` G ) } C_ B ) |
| 7 | 6 | ad2antrr | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> { ( 0g ` G ) } C_ B ) |
| 8 | 3 7 | eqssd | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> B = { ( 0g ` G ) } ) |
| 9 | 8 | fveq2d | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> ( # ` B ) = ( # ` { ( 0g ` G ) } ) ) |
| 10 | fvex | |- ( 0g ` G ) e. _V |
|
| 11 | hashsng | |- ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) |
|
| 12 | 10 11 | ax-mp | |- ( # ` { ( 0g ` G ) } ) = 1 |
| 13 | 9 12 | eqtrdi | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> ( # ` B ) = 1 ) |
| 14 | simplr | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> ( # ` B ) e. Prime ) |
|
| 15 | 13 14 | eqeltrrd | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> 1 e. Prime ) |
| 16 | 15 | ex | |- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> ( B C_ { ( 0g ` G ) } -> 1 e. Prime ) ) |
| 17 | 2 16 | mtoi | |- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> -. B C_ { ( 0g ` G ) } ) |
| 18 | nss | |- ( -. B C_ { ( 0g ` G ) } <-> E. x ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) |
|
| 19 | 17 18 | sylib | |- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> E. x ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) |
| 20 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 21 | simpll | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> G e. Grp ) |
|
| 22 | simprl | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> x e. B ) |
|
| 23 | simprr | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> -. x e. { ( 0g ` G ) } ) |
|
| 24 | 20 4 1 | odeq1 | |- ( ( G e. Grp /\ x e. B ) -> ( ( ( od ` G ) ` x ) = 1 <-> x = ( 0g ` G ) ) ) |
| 25 | 21 22 24 | syl2anc | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) = 1 <-> x = ( 0g ` G ) ) ) |
| 26 | velsn | |- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
|
| 27 | 25 26 | bitr4di | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) = 1 <-> x e. { ( 0g ` G ) } ) ) |
| 28 | 23 27 | mtbird | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> -. ( ( od ` G ) ` x ) = 1 ) |
| 29 | prmnn | |- ( ( # ` B ) e. Prime -> ( # ` B ) e. NN ) |
|
| 30 | 29 | ad2antlr | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( # ` B ) e. NN ) |
| 31 | 30 | nnnn0d | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( # ` B ) e. NN0 ) |
| 32 | 1 | fvexi | |- B e. _V |
| 33 | hashclb | |- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
|
| 34 | 32 33 | ax-mp | |- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
| 35 | 31 34 | sylibr | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> B e. Fin ) |
| 36 | 1 20 | oddvds2 | |- ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) |
| 37 | 21 35 22 36 | syl3anc | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) |
| 38 | simplr | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( # ` B ) e. Prime ) |
|
| 39 | 1 20 | odcl2 | |- ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) e. NN ) |
| 40 | 21 35 22 39 | syl3anc | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( od ` G ) ` x ) e. NN ) |
| 41 | dvdsprime | |- ( ( ( # ` B ) e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( ( ( od ` G ) ` x ) || ( # ` B ) <-> ( ( ( od ` G ) ` x ) = ( # ` B ) \/ ( ( od ` G ) ` x ) = 1 ) ) ) |
|
| 42 | 38 40 41 | syl2anc | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) || ( # ` B ) <-> ( ( ( od ` G ) ` x ) = ( # ` B ) \/ ( ( od ` G ) ` x ) = 1 ) ) ) |
| 43 | 37 42 | mpbid | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) = ( # ` B ) \/ ( ( od ` G ) ` x ) = 1 ) ) |
| 44 | 43 | ord | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( -. ( ( od ` G ) ` x ) = ( # ` B ) -> ( ( od ` G ) ` x ) = 1 ) ) |
| 45 | 28 44 | mt3d | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( od ` G ) ` x ) = ( # ` B ) ) |
| 46 | 1 20 21 22 45 | iscygodd | |- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> G e. CycGrp ) |
| 47 | 19 46 | exlimddv | |- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. CycGrp ) |