This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The curry functor of a functor F : C X. D --> E is a functor curryF ( F ) : C --> ( D --> E ) . (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfcl.g | |- G = ( <. C , D >. curryF F ) |
|
| curfcl.q | |- Q = ( D FuncCat E ) |
||
| curfcl.c | |- ( ph -> C e. Cat ) |
||
| curfcl.d | |- ( ph -> D e. Cat ) |
||
| curfcl.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| Assertion | curfcl | |- ( ph -> G e. ( C Func Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfcl.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curfcl.q | |- Q = ( D FuncCat E ) |
|
| 3 | curfcl.c | |- ( ph -> C e. Cat ) |
|
| 4 | curfcl.d | |- ( ph -> D e. Cat ) |
|
| 5 | curfcl.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 10 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 11 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 12 | 1 6 3 4 5 7 8 9 10 11 | curfval | |- ( ph -> G = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 13 | fvex | |- ( Base ` C ) e. _V |
|
| 14 | 13 | mptex | |- ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) e. _V |
| 15 | 13 13 | mpoex | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) e. _V |
| 16 | 14 15 | op1std | |- ( G = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. -> ( 1st ` G ) = ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 17 | 12 16 | syl | |- ( ph -> ( 1st ` G ) = ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 18 | 14 15 | op2ndd | |- ( G = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. -> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) ) |
| 19 | 12 18 | syl | |- ( ph -> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) ) |
| 20 | 17 19 | opeq12d | |- ( ph -> <. ( 1st ` G ) , ( 2nd ` G ) >. = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 21 | 12 20 | eqtr4d | |- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 22 | 2 | fucbas | |- ( D Func E ) = ( Base ` Q ) |
| 23 | eqid | |- ( D Nat E ) = ( D Nat E ) |
|
| 24 | 2 23 | fuchom | |- ( D Nat E ) = ( Hom ` Q ) |
| 25 | eqid | |- ( Id ` Q ) = ( Id ` Q ) |
|
| 26 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 27 | eqid | |- ( comp ` Q ) = ( comp ` Q ) |
|
| 28 | funcrcl | |- ( F e. ( ( C Xc. D ) Func E ) -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
|
| 29 | 5 28 | syl | |- ( ph -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 30 | 29 | simprd | |- ( ph -> E e. Cat ) |
| 31 | 2 4 30 | fuccat | |- ( ph -> Q e. Cat ) |
| 32 | opex | |- <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. e. _V |
|
| 33 | 32 | a1i | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. e. _V ) |
| 34 | 3 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 35 | 4 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 36 | 5 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 37 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 38 | eqid | |- ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` x ) |
|
| 39 | 1 6 34 35 36 7 37 38 | curf1cl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
| 40 | 33 17 39 | fmpt2d | |- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( D Func E ) ) |
| 41 | eqid | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
|
| 42 | ovex | |- ( x ( Hom ` C ) y ) e. _V |
|
| 43 | 42 | mptex | |- ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) e. _V |
| 44 | 41 43 | fnmpoi | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 45 | 19 | fneq1d | |- ( ph -> ( ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 46 | 44 45 | mpbiri | |- ( ph -> ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 47 | fvex | |- ( Base ` D ) e. _V |
|
| 48 | 47 | mptex | |- ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) e. _V |
| 49 | 48 | a1i | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) e. _V ) |
| 50 | 19 | oveqd | |- ( ph -> ( x ( 2nd ` G ) y ) = ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) y ) ) |
| 51 | 41 | ovmpt4g | |- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) e. _V ) -> ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 52 | 43 51 | mp3an3 | |- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 53 | 50 52 | sylan9eq | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 54 | 3 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> C e. Cat ) |
| 55 | 4 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> D e. Cat ) |
| 56 | 5 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 57 | simplrl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
|
| 58 | simplrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
|
| 59 | simpr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> g e. ( x ( Hom ` C ) y ) ) |
|
| 60 | eqid | |- ( ( x ( 2nd ` G ) y ) ` g ) = ( ( x ( 2nd ` G ) y ) ` g ) |
|
| 61 | 1 6 54 55 56 7 10 11 57 58 59 60 23 | curf2cl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 62 | 49 53 61 | fmpt2d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 63 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 64 | 63 6 7 | xpcbas | |- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
| 65 | eqid | |- ( Id ` ( C Xc. D ) ) = ( Id ` ( C Xc. D ) ) |
|
| 66 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 67 | relfunc | |- Rel ( ( C Xc. D ) Func E ) |
|
| 68 | 1st2ndbr | |- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
|
| 69 | 67 5 68 | sylancr | |- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 70 | 69 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 71 | opelxpi | |- ( ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 72 | 71 | adantll | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 73 | 64 65 66 70 72 | funcid | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. x , y >. ) ) ) |
| 74 | 3 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> C e. Cat ) |
| 75 | 4 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> D e. Cat ) |
| 76 | 37 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
| 77 | simpr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> y e. ( Base ` D ) ) |
|
| 78 | 63 74 75 6 7 9 11 65 76 77 | xpcid | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) = <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) |
| 79 | 78 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) ) = ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) ) |
| 80 | df-ov | |- ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) = ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) |
|
| 81 | 79 80 | eqtr4di | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) ) = ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) |
| 82 | 5 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 83 | 1 6 74 75 82 7 76 38 77 | curf11 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( x ( 1st ` F ) y ) ) |
| 84 | df-ov | |- ( x ( 1st ` F ) y ) = ( ( 1st ` F ) ` <. x , y >. ) |
|
| 85 | 83 84 | eqtr2di | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` F ) ` <. x , y >. ) = ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) |
| 86 | 85 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( Id ` E ) ` ( ( 1st ` F ) ` <. x , y >. ) ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
| 87 | 73 81 86 | 3eqtr3d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
| 88 | 87 | mpteq2dva | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) = ( y e. ( Base ` D ) |-> ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) ) |
| 89 | 30 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> E e. Cat ) |
| 90 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 91 | 90 66 | cidfn | |- ( E e. Cat -> ( Id ` E ) Fn ( Base ` E ) ) |
| 92 | 89 91 | syl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( Id ` E ) Fn ( Base ` E ) ) |
| 93 | dffn2 | |- ( ( Id ` E ) Fn ( Base ` E ) <-> ( Id ` E ) : ( Base ` E ) --> _V ) |
|
| 94 | 92 93 | sylib | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( Id ` E ) : ( Base ` E ) --> _V ) |
| 95 | relfunc | |- Rel ( D Func E ) |
|
| 96 | 1st2ndbr | |- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` x ) e. ( D Func E ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
|
| 97 | 95 39 96 | sylancr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 98 | 7 90 97 | funcf1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
| 99 | fcompt | |- ( ( ( Id ` E ) : ( Base ` E ) --> _V /\ ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) -> ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) = ( y e. ( Base ` D ) |-> ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) ) |
|
| 100 | 94 98 99 | syl2anc | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) = ( y e. ( Base ` D ) |-> ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) ) |
| 101 | 88 100 | eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
| 102 | 6 10 9 34 37 | catidcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 103 | eqid | |- ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) |
|
| 104 | 1 6 34 35 36 7 10 11 37 37 102 103 | curf2 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( y e. ( Base ` D ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) ) |
| 105 | 2 25 66 39 | fucid | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` Q ) ` ( ( 1st ` G ) ` x ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
| 106 | 101 104 105 | 3eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` Q ) ` ( ( 1st ` G ) ` x ) ) ) |
| 107 | 3 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> C e. Cat ) |
| 108 | 107 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> C e. Cat ) |
| 109 | 4 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> D e. Cat ) |
| 110 | 109 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> D e. Cat ) |
| 111 | 5 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 112 | 111 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 113 | simp21 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> x e. ( Base ` C ) ) |
|
| 114 | 113 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
| 115 | simpr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> w e. ( Base ` D ) ) |
|
| 116 | 1 6 108 110 112 7 114 38 115 | curf11 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( x ( 1st ` F ) w ) ) |
| 117 | df-ov | |- ( x ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. x , w >. ) |
|
| 118 | 116 117 | eqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( ( 1st ` F ) ` <. x , w >. ) ) |
| 119 | simp22 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> y e. ( Base ` C ) ) |
|
| 120 | 119 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> y e. ( Base ` C ) ) |
| 121 | eqid | |- ( ( 1st ` G ) ` y ) = ( ( 1st ` G ) ` y ) |
|
| 122 | 1 6 108 110 112 7 120 121 115 | curf11 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) = ( y ( 1st ` F ) w ) ) |
| 123 | df-ov | |- ( y ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. y , w >. ) |
|
| 124 | 122 123 | eqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) = ( ( 1st ` F ) ` <. y , w >. ) ) |
| 125 | 118 124 | opeq12d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. = <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ) |
| 126 | simp23 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> z e. ( Base ` C ) ) |
|
| 127 | 126 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> z e. ( Base ` C ) ) |
| 128 | eqid | |- ( ( 1st ` G ) ` z ) = ( ( 1st ` G ) ` z ) |
|
| 129 | 1 6 108 110 112 7 127 128 115 | curf11 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( z ( 1st ` F ) w ) ) |
| 130 | df-ov | |- ( z ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. z , w >. ) |
|
| 131 | 129 130 | eqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( ( 1st ` F ) ` <. z , w >. ) ) |
| 132 | 125 131 | oveq12d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
| 133 | simp3r | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
|
| 134 | 133 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> g e. ( y ( Hom ` C ) z ) ) |
| 135 | eqid | |- ( ( y ( 2nd ` G ) z ) ` g ) = ( ( y ( 2nd ` G ) z ) ` g ) |
|
| 136 | 1 6 108 110 112 7 10 11 120 127 134 135 115 | curf2val | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) = ( g ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) |
| 137 | df-ov | |- ( g ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) |
|
| 138 | 136 137 | eqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) = ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) ) |
| 139 | simp3l | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 140 | 139 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 141 | eqid | |- ( ( x ( 2nd ` G ) y ) ` f ) = ( ( x ( 2nd ` G ) y ) ` f ) |
|
| 142 | 1 6 108 110 112 7 10 11 114 120 140 141 115 | curf2val | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) = ( f ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ( ( Id ` D ) ` w ) ) ) |
| 143 | df-ov | |- ( f ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) |
|
| 144 | 142 143 | eqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) = ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) |
| 145 | 132 138 144 | oveq123d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) = ( ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) ) |
| 146 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 147 | eqid | |- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
|
| 148 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 149 | 67 112 68 | sylancr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 150 | opelxpi | |- ( ( x e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. x , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 151 | 113 150 | sylan | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. x , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 152 | opelxpi | |- ( ( y e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. y , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 153 | 119 152 | sylan | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. y , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 154 | opelxpi | |- ( ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 155 | 126 154 | sylan | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 156 | 7 8 11 110 115 | catidcl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( Id ` D ) ` w ) e. ( w ( Hom ` D ) w ) ) |
| 157 | 140 156 | opelxpd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( ( x ( Hom ` C ) y ) X. ( w ( Hom ` D ) w ) ) ) |
| 158 | 63 6 7 10 8 114 115 120 115 146 | xpchom2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. y , w >. ) = ( ( x ( Hom ` C ) y ) X. ( w ( Hom ` D ) w ) ) ) |
| 159 | 157 158 | eleqtrrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. y , w >. ) ) |
| 160 | 134 156 | opelxpd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. g , ( ( Id ` D ) ` w ) >. e. ( ( y ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
| 161 | 63 6 7 10 8 120 115 127 115 146 | xpchom2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. y , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) = ( ( y ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
| 162 | 160 161 | eleqtrrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. g , ( ( Id ` D ) ` w ) >. e. ( <. y , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) ) |
| 163 | 64 146 147 148 149 151 153 155 159 162 | funcco | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) ) = ( ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) ) |
| 164 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 165 | 63 6 7 10 8 114 115 120 115 26 164 147 127 115 140 156 134 156 | xpcco2 | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) = <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( ( Id ` D ) ` w ) ( <. w , w >. ( comp ` D ) w ) ( ( Id ` D ) ` w ) ) >. ) |
| 166 | 7 8 11 110 115 164 115 156 | catlid | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( Id ` D ) ` w ) ( <. w , w >. ( comp ` D ) w ) ( ( Id ` D ) ` w ) ) = ( ( Id ` D ) ` w ) ) |
| 167 | 166 | opeq2d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( ( Id ` D ) ` w ) ( <. w , w >. ( comp ` D ) w ) ( ( Id ` D ) ` w ) ) >. = <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) |
| 168 | 165 167 | eqtrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) = <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) |
| 169 | 168 | fveq2d | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) ) |
| 170 | df-ov | |- ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) |
|
| 171 | 169 170 | eqtr4di | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) ) = ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) |
| 172 | 145 163 171 | 3eqtr2rd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) ) |
| 173 | 172 | mpteq2dva | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( w e. ( Base ` D ) |-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) = ( w e. ( Base ` D ) |-> ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) ) ) |
| 174 | 6 10 26 107 113 119 126 139 133 | catcocl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 175 | eqid | |- ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
|
| 176 | 1 6 107 109 111 7 10 11 113 126 174 175 | curf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( w e. ( Base ` D ) |-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) ) |
| 177 | 1 6 107 109 111 7 10 11 113 119 139 141 23 | curf2cl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) y ) ` f ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 178 | 1 6 107 109 111 7 10 11 119 126 133 135 23 | curf2cl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` G ) z ) ` g ) e. ( ( ( 1st ` G ) ` y ) ( D Nat E ) ( ( 1st ` G ) ` z ) ) ) |
| 179 | 2 23 7 148 27 177 178 | fucco | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` Q ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) = ( w e. ( Base ` D ) |-> ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) ) ) |
| 180 | 173 176 179 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` Q ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) ) |
| 181 | 6 22 10 24 9 25 26 27 3 31 40 46 62 106 180 | isfuncd | |- ( ph -> ( 1st ` G ) ( C Func Q ) ( 2nd ` G ) ) |
| 182 | df-br | |- ( ( 1st ` G ) ( C Func Q ) ( 2nd ` G ) <-> <. ( 1st ` G ) , ( 2nd ` G ) >. e. ( C Func Q ) ) |
|
| 183 | 181 182 | sylib | |- ( ph -> <. ( 1st ` G ) , ( 2nd ` G ) >. e. ( C Func Q ) ) |
| 184 | 21 183 | eqeltrd | |- ( ph -> G e. ( C Func Q ) ) |