This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The curry functor of a functor F : C X. D --> E is a functor curryF ( F ) : C --> ( D --> E ) . (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfcl.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curfcl.q | ⊢ 𝑄 = ( 𝐷 FuncCat 𝐸 ) | ||
| curfcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curfcl.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| Assertion | curfcl | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfcl.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curfcl.q | ⊢ 𝑄 = ( 𝐷 FuncCat 𝐸 ) | |
| 3 | curfcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curfcl.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 12 | 1 6 3 4 5 7 8 9 10 11 | curfval | ⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 13 | fvex | ⊢ ( Base ‘ 𝐶 ) ∈ V | |
| 14 | 13 | mptex | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ∈ V |
| 15 | 13 13 | mpoex | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ∈ V |
| 16 | 14 15 | op1std | ⊢ ( 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 → ( 1st ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 17 | 12 16 | syl | ⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 18 | 14 15 | op2ndd | ⊢ ( 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ) |
| 19 | 12 18 | syl | ⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ) |
| 20 | 17 19 | opeq12d | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 21 | 12 20 | eqtr4d | ⊢ ( 𝜑 → 𝐺 = 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ) |
| 22 | 2 | fucbas | ⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ 𝑄 ) |
| 23 | eqid | ⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) | |
| 24 | 2 23 | fuchom | ⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ 𝑄 ) |
| 25 | eqid | ⊢ ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 ) | |
| 26 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 27 | eqid | ⊢ ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 ) | |
| 28 | funcrcl | ⊢ ( 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 29 | 5 28 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 30 | 29 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 31 | 2 4 30 | fuccat | ⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 32 | opex | ⊢ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V | |
| 33 | 32 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V ) |
| 34 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 35 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
| 36 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 37 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 38 | eqid | ⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) | |
| 39 | 1 6 34 35 36 7 37 38 | curf1cl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 40 | 33 17 39 | fmpt2d | ⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( 𝐷 Func 𝐸 ) ) |
| 41 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) | |
| 42 | ovex | ⊢ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∈ V | |
| 43 | 42 | mptex | ⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ∈ V |
| 44 | 41 43 | fnmpoi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 45 | 19 | fneq1d | ⊢ ( 𝜑 → ( ( 2nd ‘ 𝐺 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 46 | 44 45 | mpbiri | ⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 47 | fvex | ⊢ ( Base ‘ 𝐷 ) ∈ V | |
| 48 | 47 | mptex | ⊢ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ∈ V |
| 49 | 48 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ∈ V ) |
| 50 | 19 | oveqd | ⊢ ( 𝜑 → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) ) |
| 51 | 41 | ovmpt4g | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ∈ V ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 52 | 43 51 | mp3an3 | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 53 | 50 52 | sylan9eq | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 54 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐶 ∈ Cat ) |
| 55 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐷 ∈ Cat ) |
| 56 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 57 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 58 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 59 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 60 | eqid | ⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) | |
| 61 | 1 6 54 55 56 7 10 11 57 58 59 60 23 | curf2cl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 62 | 49 53 61 | fmpt2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 63 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 64 | 63 6 7 | xpcbas | ⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 65 | eqid | ⊢ ( Id ‘ ( 𝐶 ×c 𝐷 ) ) = ( Id ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 66 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 67 | relfunc | ⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) | |
| 68 | 1st2ndbr | ⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) | |
| 69 | 67 5 68 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 71 | opelxpi | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) | |
| 72 | 71 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 73 | 64 65 66 70 72 | funcid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 74 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
| 75 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
| 76 | 37 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 77 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) | |
| 78 | 63 74 75 6 7 9 11 65 76 77 | xpcid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) |
| 79 | 78 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) ) |
| 80 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) | |
| 81 | 79 80 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) |
| 82 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 83 | 1 6 74 75 82 7 76 38 77 | curf11 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 84 | df-ov | ⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 85 | 83 84 | eqtr2di | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) |
| 86 | 85 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 87 | 73 81 86 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 88 | 87 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
| 89 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat ) |
| 90 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 91 | 90 66 | cidfn | ⊢ ( 𝐸 ∈ Cat → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
| 92 | 89 91 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
| 93 | dffn2 | ⊢ ( ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ↔ ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ) | |
| 94 | 92 93 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ) |
| 95 | relfunc | ⊢ Rel ( 𝐷 Func 𝐸 ) | |
| 96 | 1st2ndbr | ⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) | |
| 97 | 95 39 96 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 98 | 7 90 97 | funcf1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 99 | fcompt | ⊢ ( ( ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ∧ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) → ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) | |
| 100 | 94 98 99 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
| 101 | 88 100 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 102 | 6 10 9 34 37 | catidcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 103 | eqid | ⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) | |
| 104 | 1 6 34 35 36 7 10 11 37 37 102 103 | curf2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) ) |
| 105 | 2 25 66 39 | fucid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑄 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 106 | 101 104 105 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑄 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 107 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
| 108 | 107 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
| 109 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐷 ∈ Cat ) |
| 110 | 109 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
| 111 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 112 | 111 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 113 | simp21 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 114 | 113 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 115 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) ) | |
| 116 | 1 6 108 110 112 7 114 38 115 | curf11 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 117 | df-ov | ⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) | |
| 118 | 116 117 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) ) |
| 119 | simp22 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 120 | 119 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 121 | eqid | ⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) | |
| 122 | 1 6 108 110 112 7 120 121 115 | curf11 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) = ( 𝑦 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 123 | df-ov | ⊢ ( 𝑦 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) | |
| 124 | 122 123 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) ) |
| 125 | 118 124 | opeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ) |
| 126 | simp23 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 127 | 126 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 128 | eqid | ⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) | |
| 129 | 1 6 108 110 112 7 127 128 115 | curf11 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 130 | df-ov | ⊢ ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) | |
| 131 | 129 130 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) |
| 132 | 125 131 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
| 133 | simp3r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 134 | 133 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 135 | eqid | ⊢ ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) = ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) | |
| 136 | 1 6 108 110 112 7 10 11 120 127 134 135 115 | curf2val | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) = ( 𝑔 ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
| 137 | df-ov | ⊢ ( 𝑔 ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) | |
| 138 | 136 137 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) = ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
| 139 | simp3l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 140 | 139 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 141 | eqid | ⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) | |
| 142 | 1 6 108 110 112 7 10 11 114 120 140 141 115 | curf2val | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
| 143 | df-ov | ⊢ ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) | |
| 144 | 142 143 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
| 145 | 132 138 144 | oveq123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) = ( ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) ) |
| 146 | eqid | ⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 147 | eqid | ⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 148 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 149 | 67 112 68 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 150 | opelxpi | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) | |
| 151 | 113 150 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 152 | opelxpi | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) | |
| 153 | 119 152 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 154 | opelxpi | ⊢ ( ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) | |
| 155 | 126 154 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 156 | 7 8 11 110 115 | catidcl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
| 157 | 140 156 | opelxpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 158 | 63 6 7 10 8 114 115 120 115 146 | xpchom2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 159 | 157 158 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑤 〉 ) ) |
| 160 | 134 156 | opelxpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 161 | 63 6 7 10 8 120 115 127 115 146 | xpchom2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑦 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) = ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 162 | 160 161 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑦 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ) |
| 163 | 64 146 147 148 149 151 153 155 159 162 | funcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) ) |
| 164 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 165 | 63 6 7 10 8 114 115 120 115 26 164 147 127 115 140 156 134 156 | xpcco2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) 〉 ) |
| 166 | 7 8 11 110 115 164 115 156 | catlid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) |
| 167 | 166 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) 〉 = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
| 168 | 165 167 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
| 169 | 168 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
| 170 | df-ov | ⊢ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) | |
| 171 | 169 170 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
| 172 | 145 163 171 | 3eqtr2rd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) |
| 173 | 172 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) ) |
| 174 | 6 10 26 107 113 119 126 139 133 | catcocl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 175 | eqid | ⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) | |
| 176 | 1 6 107 109 111 7 10 11 113 126 174 175 | curf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) ) |
| 177 | 1 6 107 109 111 7 10 11 113 119 139 141 23 | curf2cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 178 | 1 6 107 109 111 7 10 11 119 126 133 135 23 | curf2cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 179 | 2 23 7 148 27 177 178 | fucco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑄 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) ) |
| 180 | 173 176 179 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑄 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) ) |
| 181 | 6 22 10 24 9 25 26 27 3 31 40 46 62 106 180 | isfuncd | ⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝐺 ) ) |
| 182 | df-br | ⊢ ( ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝐺 ) ↔ 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ∈ ( 𝐶 Func 𝑄 ) ) | |
| 183 | 181 182 | sylib | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ∈ ( 𝐶 Func 𝑄 ) ) |
| 184 | 21 183 | eqeltrd | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝑄 ) ) |