This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| curfpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
||
| curfpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| curfpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| curfpropd.a | |- ( ph -> A e. Cat ) |
||
| curfpropd.b | |- ( ph -> B e. Cat ) |
||
| curfpropd.c | |- ( ph -> C e. Cat ) |
||
| curfpropd.d | |- ( ph -> D e. Cat ) |
||
| curfpropd.f | |- ( ph -> F e. ( ( A Xc. C ) Func E ) ) |
||
| Assertion | curfpropd | |- ( ph -> ( <. A , C >. curryF F ) = ( <. B , D >. curryF F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfpropd.1 | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
|
| 2 | curfpropd.2 | |- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
|
| 3 | curfpropd.3 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 4 | curfpropd.4 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 5 | curfpropd.a | |- ( ph -> A e. Cat ) |
|
| 6 | curfpropd.b | |- ( ph -> B e. Cat ) |
|
| 7 | curfpropd.c | |- ( ph -> C e. Cat ) |
|
| 8 | curfpropd.d | |- ( ph -> D e. Cat ) |
|
| 9 | curfpropd.f | |- ( ph -> F e. ( ( A Xc. C ) Func E ) ) |
|
| 10 | 1 | homfeqbas | |- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 11 | 3 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. ( Base ` A ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 13 | 12 | mpteq1d | |- ( ( ph /\ x e. ( Base ` A ) ) -> ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) = ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) ) |
| 14 | 12 | adantr | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ y e. ( Base ` C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 15 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 16 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 17 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 18 | 3 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 19 | simprl | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 20 | simprr | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> z e. ( Base ` C ) ) |
|
| 21 | 15 16 17 18 19 20 | homfeqval | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( y ( Hom ` C ) z ) = ( y ( Hom ` D ) z ) ) |
| 22 | 1 2 5 6 | cidpropd | |- ( ph -> ( Id ` A ) = ( Id ` B ) ) |
| 23 | 22 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( Id ` A ) = ( Id ` B ) ) |
| 24 | 23 | fveq1d | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( ( Id ` A ) ` x ) = ( ( Id ` B ) ` x ) ) |
| 25 | 24 | oveq1d | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) |
| 26 | 21 25 | mpteq12dv | |- ( ( ( ph /\ x e. ( Base ` A ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) |
| 27 | 12 14 26 | mpoeq123dva | |- ( ( ph /\ x e. ( Base ` A ) ) -> ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) ) |
| 28 | 13 27 | opeq12d | |- ( ( ph /\ x e. ( Base ` A ) ) -> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) |
| 29 | 10 28 | mpteq12dva | |- ( ph -> ( x e. ( Base ` A ) |-> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) = ( x e. ( Base ` B ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 30 | 10 | adantr | |- ( ( ph /\ x e. ( Base ` A ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 31 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 32 | eqid | |- ( Hom ` A ) = ( Hom ` A ) |
|
| 33 | eqid | |- ( Hom ` B ) = ( Hom ` B ) |
|
| 34 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 35 | simprl | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` A ) ) |
|
| 36 | simprr | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` A ) ) |
|
| 37 | 31 32 33 34 35 36 | homfeqval | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 38 | 11 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 39 | 3 4 7 8 | cidpropd | |- ( ph -> ( Id ` C ) = ( Id ` D ) ) |
| 40 | 39 | ad3antrrr | |- ( ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) /\ z e. ( Base ` C ) ) -> ( Id ` C ) = ( Id ` D ) ) |
| 41 | 40 | fveq1d | |- ( ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) /\ z e. ( Base ` C ) ) -> ( ( Id ` C ) ` z ) = ( ( Id ` D ) ` z ) ) |
| 42 | 41 | oveq2d | |- ( ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) /\ z e. ( Base ` C ) ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) = ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) |
| 43 | 38 42 | mpteq12dva | |- ( ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) /\ g e. ( x ( Hom ` A ) y ) ) -> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) = ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) |
| 44 | 37 43 | mpteq12dva | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) = ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 45 | 10 30 44 | mpoeq123dva | |- ( ph -> ( x e. ( Base ` A ) , y e. ( Base ` A ) |-> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) ) = ( x e. ( Base ` B ) , y e. ( Base ` B ) |-> ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) ) |
| 46 | 29 45 | opeq12d | |- ( ph -> <. ( x e. ( Base ` A ) |-> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` A ) , y e. ( Base ` A ) |-> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) ) >. = <. ( x e. ( Base ` B ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` B ) , y e. ( Base ` B ) |-> ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 47 | eqid | |- ( <. A , C >. curryF F ) = ( <. A , C >. curryF F ) |
|
| 48 | eqid | |- ( Id ` A ) = ( Id ` A ) |
|
| 49 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 50 | 47 31 5 7 9 15 16 48 32 49 | curfval | |- ( ph -> ( <. A , C >. curryF F ) = <. ( x e. ( Base ` A ) |-> <. ( y e. ( Base ` C ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` C ) , z e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( Id ` A ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` A ) , y e. ( Base ` A ) |-> ( g e. ( x ( Hom ` A ) y ) |-> ( z e. ( Base ` C ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` C ) ` z ) ) ) ) ) >. ) |
| 51 | eqid | |- ( <. B , D >. curryF F ) = ( <. B , D >. curryF F ) |
|
| 52 | eqid | |- ( Base ` B ) = ( Base ` B ) |
|
| 53 | 1 2 3 4 5 6 7 8 | xpcpropd | |- ( ph -> ( A Xc. C ) = ( B Xc. D ) ) |
| 54 | 53 | oveq1d | |- ( ph -> ( ( A Xc. C ) Func E ) = ( ( B Xc. D ) Func E ) ) |
| 55 | 9 54 | eleqtrd | |- ( ph -> F e. ( ( B Xc. D ) Func E ) ) |
| 56 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 57 | eqid | |- ( Id ` B ) = ( Id ` B ) |
|
| 58 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 59 | 51 52 6 8 55 56 17 57 33 58 | curfval | |- ( ph -> ( <. B , D >. curryF F ) = <. ( x e. ( Base ` B ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` B ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` B ) , y e. ( Base ` B ) |-> ( g e. ( x ( Hom ` B ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 60 | 46 50 59 | 3eqtr4d | |- ( ph -> ( <. A , C >. curryF F ) = ( <. B , D >. curryF F ) ) |