This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| curfval.a | |- A = ( Base ` C ) |
||
| curfval.c | |- ( ph -> C e. Cat ) |
||
| curfval.d | |- ( ph -> D e. Cat ) |
||
| curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curfval.b | |- B = ( Base ` D ) |
||
| curf1.x | |- ( ph -> X e. A ) |
||
| curf1.k | |- K = ( ( 1st ` G ) ` X ) |
||
| Assertion | curf1cl | |- ( ph -> K e. ( D Func E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curfval.a | |- A = ( Base ` C ) |
|
| 3 | curfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | curfval.d | |- ( ph -> D e. Cat ) |
|
| 5 | curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curfval.b | |- B = ( Base ` D ) |
|
| 7 | curf1.x | |- ( ph -> X e. A ) |
|
| 8 | curf1.k | |- K = ( ( 1st ` G ) ` X ) |
|
| 9 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 10 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 10 | curf1 | |- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 12 | 6 | fvexi | |- B e. _V |
| 13 | 12 | mptex | |- ( y e. B |-> ( X ( 1st ` F ) y ) ) e. _V |
| 14 | 12 12 | mpoex | |- ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) e. _V |
| 15 | 13 14 | op1std | |- ( K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. -> ( 1st ` K ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
| 16 | 11 15 | syl | |- ( ph -> ( 1st ` K ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
| 17 | 13 14 | op2ndd | |- ( K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
| 18 | 11 17 | syl | |- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
| 19 | 16 18 | opeq12d | |- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 20 | 11 19 | eqtr4d | |- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 21 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 22 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 23 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 24 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 25 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 26 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 27 | funcrcl | |- ( F e. ( ( C Xc. D ) Func E ) -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
|
| 28 | 5 27 | syl | |- ( ph -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 29 | 28 | simprd | |- ( ph -> E e. Cat ) |
| 30 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 31 | 30 2 6 | xpcbas | |- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 32 | relfunc | |- Rel ( ( C Xc. D ) Func E ) |
|
| 33 | 1st2ndbr | |- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
|
| 34 | 32 5 33 | sylancr | |- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 35 | 31 21 34 | funcf1 | |- ( ph -> ( 1st ` F ) : ( A X. B ) --> ( Base ` E ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ y e. B ) -> ( 1st ` F ) : ( A X. B ) --> ( Base ` E ) ) |
| 37 | 7 | adantr | |- ( ( ph /\ y e. B ) -> X e. A ) |
| 38 | simpr | |- ( ( ph /\ y e. B ) -> y e. B ) |
|
| 39 | 36 37 38 | fovcdmd | |- ( ( ph /\ y e. B ) -> ( X ( 1st ` F ) y ) e. ( Base ` E ) ) |
| 40 | 16 39 | fmpt3d | |- ( ph -> ( 1st ` K ) : B --> ( Base ` E ) ) |
| 41 | eqid | |- ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) = ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
|
| 42 | ovex | |- ( y ( Hom ` D ) z ) e. _V |
|
| 43 | 42 | mptex | |- ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V |
| 44 | 41 43 | fnmpoi | |- ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) Fn ( B X. B ) |
| 45 | 18 | fneq1d | |- ( ph -> ( ( 2nd ` K ) Fn ( B X. B ) <-> ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) Fn ( B X. B ) ) ) |
| 46 | 44 45 | mpbiri | |- ( ph -> ( 2nd ` K ) Fn ( B X. B ) ) |
| 47 | 18 | oveqd | |- ( ph -> ( y ( 2nd ` K ) z ) = ( y ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) z ) ) |
| 48 | 41 | ovmpt4g | |- ( ( y e. B /\ z e. B /\ ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V ) -> ( y ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 49 | 43 48 | mp3an3 | |- ( ( y e. B /\ z e. B ) -> ( y ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 50 | 47 49 | sylan9eq | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( 2nd ` K ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 51 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 52 | 34 | ad2antrr | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 53 | 7 | ad2antrr | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> X e. A ) |
| 54 | simplrl | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> y e. B ) |
|
| 55 | 53 54 | opelxpd | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> <. X , y >. e. ( A X. B ) ) |
| 56 | simplrr | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> z e. B ) |
|
| 57 | 53 56 | opelxpd | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> <. X , z >. e. ( A X. B ) ) |
| 58 | 31 51 22 52 55 57 | funcf2 | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) --> ( ( ( 1st ` F ) ` <. X , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. X , z >. ) ) ) |
| 59 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 60 | 30 31 59 9 51 55 57 | xpchom | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) = ( ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) X. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) ) |
| 61 | 3 | ad2antrr | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> C e. Cat ) |
| 62 | 4 | ad2antrr | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> D e. Cat ) |
| 63 | 5 | ad2antrr | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 64 | 1 2 61 62 63 6 53 8 54 | curf11 | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` K ) ` y ) = ( X ( 1st ` F ) y ) ) |
| 65 | df-ov | |- ( X ( 1st ` F ) y ) = ( ( 1st ` F ) ` <. X , y >. ) |
|
| 66 | 64 65 | eqtr2di | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` F ) ` <. X , y >. ) = ( ( 1st ` K ) ` y ) ) |
| 67 | 1 2 61 62 63 6 53 8 56 | curf11 | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` K ) ` z ) = ( X ( 1st ` F ) z ) ) |
| 68 | df-ov | |- ( X ( 1st ` F ) z ) = ( ( 1st ` F ) ` <. X , z >. ) |
|
| 69 | 67 68 | eqtr2di | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` F ) ` <. X , z >. ) = ( ( 1st ` K ) ` z ) ) |
| 70 | 66 69 | oveq12d | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( 1st ` F ) ` <. X , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. X , z >. ) ) = ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 71 | 60 70 | feq23d | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) --> ( ( ( 1st ` F ) ` <. X , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. X , z >. ) ) <-> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) X. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) ) |
| 72 | 58 71 | mpbid | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) X. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 73 | 2 59 10 61 53 | catidcl | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 74 | op1stg | |- ( ( X e. A /\ y e. B ) -> ( 1st ` <. X , y >. ) = X ) |
|
| 75 | 53 54 74 | syl2anc | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` <. X , y >. ) = X ) |
| 76 | op1stg | |- ( ( X e. A /\ z e. B ) -> ( 1st ` <. X , z >. ) = X ) |
|
| 77 | 53 56 76 | syl2anc | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` <. X , z >. ) = X ) |
| 78 | 75 77 | oveq12d | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) = ( X ( Hom ` C ) X ) ) |
| 79 | 73 78 | eleqtrrd | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` X ) e. ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) ) |
| 80 | simpr | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> g e. ( y ( Hom ` D ) z ) ) |
|
| 81 | op2ndg | |- ( ( X e. A /\ y e. B ) -> ( 2nd ` <. X , y >. ) = y ) |
|
| 82 | 53 54 81 | syl2anc | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 2nd ` <. X , y >. ) = y ) |
| 83 | op2ndg | |- ( ( X e. A /\ z e. B ) -> ( 2nd ` <. X , z >. ) = z ) |
|
| 84 | 53 56 83 | syl2anc | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 2nd ` <. X , z >. ) = z ) |
| 85 | 82 84 | oveq12d | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) = ( y ( Hom ` D ) z ) ) |
| 86 | 80 85 | eleqtrrd | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> g e. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) |
| 87 | 72 79 86 | fovcdmd | |- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) e. ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 88 | 50 87 | fmpt3d | |- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( 2nd ` K ) z ) : ( y ( Hom ` D ) z ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 89 | 3 | adantr | |- ( ( ph /\ y e. B ) -> C e. Cat ) |
| 90 | 4 | adantr | |- ( ( ph /\ y e. B ) -> D e. Cat ) |
| 91 | eqid | |- ( Id ` ( C Xc. D ) ) = ( Id ` ( C Xc. D ) ) |
|
| 92 | 30 89 90 2 6 10 23 91 37 38 | xpcid | |- ( ( ph /\ y e. B ) -> ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) = <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` y ) >. ) |
| 93 | 92 | fveq2d | |- ( ( ph /\ y e. B ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` y ) >. ) ) |
| 94 | df-ov | |- ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` y ) >. ) |
|
| 95 | 93 94 | eqtr4di | |- ( ( ph /\ y e. B ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) ) |
| 96 | 34 | adantr | |- ( ( ph /\ y e. B ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 97 | opelxpi | |- ( ( X e. A /\ y e. B ) -> <. X , y >. e. ( A X. B ) ) |
|
| 98 | 7 97 | sylan | |- ( ( ph /\ y e. B ) -> <. X , y >. e. ( A X. B ) ) |
| 99 | 31 91 24 96 98 | funcid | |- ( ( ph /\ y e. B ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. X , y >. ) ) ) |
| 100 | 95 99 | eqtr3d | |- ( ( ph /\ y e. B ) -> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. X , y >. ) ) ) |
| 101 | 5 | adantr | |- ( ( ph /\ y e. B ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 102 | 6 9 23 90 38 | catidcl | |- ( ( ph /\ y e. B ) -> ( ( Id ` D ) ` y ) e. ( y ( Hom ` D ) y ) ) |
| 103 | 1 2 89 90 101 6 37 8 38 9 10 38 102 | curf12 | |- ( ( ph /\ y e. B ) -> ( ( y ( 2nd ` K ) y ) ` ( ( Id ` D ) ` y ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) ) |
| 104 | 1 2 89 90 101 6 37 8 38 | curf11 | |- ( ( ph /\ y e. B ) -> ( ( 1st ` K ) ` y ) = ( X ( 1st ` F ) y ) ) |
| 105 | 104 65 | eqtrdi | |- ( ( ph /\ y e. B ) -> ( ( 1st ` K ) ` y ) = ( ( 1st ` F ) ` <. X , y >. ) ) |
| 106 | 105 | fveq2d | |- ( ( ph /\ y e. B ) -> ( ( Id ` E ) ` ( ( 1st ` K ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. X , y >. ) ) ) |
| 107 | 100 103 106 | 3eqtr4d | |- ( ( ph /\ y e. B ) -> ( ( y ( 2nd ` K ) y ) ` ( ( Id ` D ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` K ) ` y ) ) ) |
| 108 | 7 | 3ad2ant1 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> X e. A ) |
| 109 | simp21 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> y e. B ) |
|
| 110 | simp22 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> z e. B ) |
|
| 111 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 112 | eqid | |- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
|
| 113 | simp23 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> w e. B ) |
|
| 114 | 3 | 3ad2ant1 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> C e. Cat ) |
| 115 | 2 59 10 114 108 | catidcl | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 116 | simp3l | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> g e. ( y ( Hom ` D ) z ) ) |
|
| 117 | simp3r | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> h e. ( z ( Hom ` D ) w ) ) |
|
| 118 | 30 2 6 59 9 108 109 108 110 111 25 112 108 113 115 116 115 117 | xpcco2 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) = <. ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
| 119 | 2 59 10 114 108 111 108 115 | catlid | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) = ( ( Id ` C ) ` X ) ) |
| 120 | 119 | opeq1d | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. = <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
| 121 | 118 120 | eqtrd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) = <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
| 122 | 121 | fveq2d | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) ) |
| 123 | df-ov | |- ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
|
| 124 | 122 123 | eqtr4di | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) ) |
| 125 | 34 | 3ad2ant1 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 126 | 108 109 | opelxpd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. X , y >. e. ( A X. B ) ) |
| 127 | 108 110 | opelxpd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. X , z >. e. ( A X. B ) ) |
| 128 | 108 113 | opelxpd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. X , w >. e. ( A X. B ) ) |
| 129 | 115 116 | opelxpd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , g >. e. ( ( X ( Hom ` C ) X ) X. ( y ( Hom ` D ) z ) ) ) |
| 130 | 30 2 6 59 9 108 109 108 110 51 | xpchom2 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) = ( ( X ( Hom ` C ) X ) X. ( y ( Hom ` D ) z ) ) ) |
| 131 | 129 130 | eleqtrrd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , g >. e. ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) ) |
| 132 | 115 117 | opelxpd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , h >. e. ( ( X ( Hom ` C ) X ) X. ( z ( Hom ` D ) w ) ) ) |
| 133 | 30 2 6 59 9 108 110 108 113 51 | xpchom2 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) = ( ( X ( Hom ` C ) X ) X. ( z ( Hom ` D ) w ) ) ) |
| 134 | 132 133 | eleqtrrd | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , h >. e. ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) ) |
| 135 | 31 51 112 26 125 126 127 128 131 134 | funcco | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) ) = ( ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) ) |
| 136 | 124 135 | eqtr3d | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) ) |
| 137 | 4 | 3ad2ant1 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> D e. Cat ) |
| 138 | 5 | 3ad2ant1 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 139 | 6 9 25 137 109 110 113 116 117 | catcocl | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( h ( <. y , z >. ( comp ` D ) w ) g ) e. ( y ( Hom ` D ) w ) ) |
| 140 | 1 2 114 137 138 6 108 8 109 9 10 113 139 | curf12 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) w ) ` ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) ) |
| 141 | 1 2 114 137 138 6 108 8 109 | curf11 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` y ) = ( X ( 1st ` F ) y ) ) |
| 142 | 141 65 | eqtrdi | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` y ) = ( ( 1st ` F ) ` <. X , y >. ) ) |
| 143 | 1 2 114 137 138 6 108 8 110 | curf11 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` z ) = ( X ( 1st ` F ) z ) ) |
| 144 | 143 68 | eqtrdi | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` z ) = ( ( 1st ` F ) ` <. X , z >. ) ) |
| 145 | 142 144 | opeq12d | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. = <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ) |
| 146 | 1 2 114 137 138 6 108 8 113 | curf11 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` w ) = ( X ( 1st ` F ) w ) ) |
| 147 | df-ov | |- ( X ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. X , w >. ) |
|
| 148 | 146 147 | eqtrdi | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` w ) = ( ( 1st ` F ) ` <. X , w >. ) ) |
| 149 | 145 148 | oveq12d | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. ( comp ` E ) ( ( 1st ` K ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ) |
| 150 | 1 2 114 137 138 6 108 8 110 9 10 113 117 | curf12 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` K ) w ) ` h ) = ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) h ) ) |
| 151 | df-ov | |- ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) h ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) |
|
| 152 | 150 151 | eqtrdi | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` K ) w ) ` h ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ) |
| 153 | 1 2 114 137 138 6 108 8 109 9 10 110 116 | curf12 | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) z ) ` g ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) |
| 154 | df-ov | |- ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) = ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) |
|
| 155 | 153 154 | eqtrdi | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) z ) ` g ) = ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) |
| 156 | 149 152 155 | oveq123d | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( z ( 2nd ` K ) w ) ` h ) ( <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. ( comp ` E ) ( ( 1st ` K ) ` w ) ) ( ( y ( 2nd ` K ) z ) ` g ) ) = ( ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) ) |
| 157 | 136 140 156 | 3eqtr4d | |- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) w ) ` ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( ( z ( 2nd ` K ) w ) ` h ) ( <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. ( comp ` E ) ( ( 1st ` K ) ` w ) ) ( ( y ( 2nd ` K ) z ) ` g ) ) ) |
| 158 | 6 21 9 22 23 24 25 26 4 29 40 46 88 107 157 | isfuncd | |- ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 159 | df-br | |- ( ( 1st ` K ) ( D Func E ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Func E ) ) |
|
| 160 | 158 159 | sylib | |- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Func E ) ) |
| 161 | 20 160 | eqeltrd | |- ( ph -> K e. ( D Func E ) ) |