This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curf2.g | |- G = ( <. C , D >. curryF F ) |
|
| curf2.a | |- A = ( Base ` C ) |
||
| curf2.c | |- ( ph -> C e. Cat ) |
||
| curf2.d | |- ( ph -> D e. Cat ) |
||
| curf2.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curf2.b | |- B = ( Base ` D ) |
||
| curf2.h | |- H = ( Hom ` C ) |
||
| curf2.i | |- I = ( Id ` D ) |
||
| curf2.x | |- ( ph -> X e. A ) |
||
| curf2.y | |- ( ph -> Y e. A ) |
||
| curf2.k | |- ( ph -> K e. ( X H Y ) ) |
||
| curf2.l | |- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
||
| curf2.z | |- ( ph -> Z e. B ) |
||
| Assertion | curf2val | |- ( ph -> ( L ` Z ) = ( K ( <. X , Z >. ( 2nd ` F ) <. Y , Z >. ) ( I ` Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curf2.a | |- A = ( Base ` C ) |
|
| 3 | curf2.c | |- ( ph -> C e. Cat ) |
|
| 4 | curf2.d | |- ( ph -> D e. Cat ) |
|
| 5 | curf2.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curf2.b | |- B = ( Base ` D ) |
|
| 7 | curf2.h | |- H = ( Hom ` C ) |
|
| 8 | curf2.i | |- I = ( Id ` D ) |
|
| 9 | curf2.x | |- ( ph -> X e. A ) |
|
| 10 | curf2.y | |- ( ph -> Y e. A ) |
|
| 11 | curf2.k | |- ( ph -> K e. ( X H Y ) ) |
|
| 12 | curf2.l | |- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
|
| 13 | curf2.z | |- ( ph -> Z e. B ) |
|
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | curf2 | |- ( ph -> L = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
| 15 | simpr | |- ( ( ph /\ z = Z ) -> z = Z ) |
|
| 16 | 15 | opeq2d | |- ( ( ph /\ z = Z ) -> <. X , z >. = <. X , Z >. ) |
| 17 | 15 | opeq2d | |- ( ( ph /\ z = Z ) -> <. Y , z >. = <. Y , Z >. ) |
| 18 | 16 17 | oveq12d | |- ( ( ph /\ z = Z ) -> ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) = ( <. X , Z >. ( 2nd ` F ) <. Y , Z >. ) ) |
| 19 | eqidd | |- ( ( ph /\ z = Z ) -> K = K ) |
|
| 20 | 15 | fveq2d | |- ( ( ph /\ z = Z ) -> ( I ` z ) = ( I ` Z ) ) |
| 21 | 18 19 20 | oveq123d | |- ( ( ph /\ z = Z ) -> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) = ( K ( <. X , Z >. ( 2nd ` F ) <. Y , Z >. ) ( I ` Z ) ) ) |
| 22 | ovexd | |- ( ph -> ( K ( <. X , Z >. ( 2nd ` F ) <. Y , Z >. ) ( I ` Z ) ) e. _V ) |
|
| 23 | 14 21 13 22 | fvmptd | |- ( ph -> ( L ` Z ) = ( K ( <. X , Z >. ( 2nd ` F ) <. Y , Z >. ) ( I ` Z ) ) ) |