This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curf2.g | |- G = ( <. C , D >. curryF F ) |
|
| curf2.a | |- A = ( Base ` C ) |
||
| curf2.c | |- ( ph -> C e. Cat ) |
||
| curf2.d | |- ( ph -> D e. Cat ) |
||
| curf2.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curf2.b | |- B = ( Base ` D ) |
||
| curf2.h | |- H = ( Hom ` C ) |
||
| curf2.i | |- I = ( Id ` D ) |
||
| curf2.x | |- ( ph -> X e. A ) |
||
| curf2.y | |- ( ph -> Y e. A ) |
||
| curf2.k | |- ( ph -> K e. ( X H Y ) ) |
||
| curf2.l | |- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
||
| Assertion | curf2 | |- ( ph -> L = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curf2.a | |- A = ( Base ` C ) |
|
| 3 | curf2.c | |- ( ph -> C e. Cat ) |
|
| 4 | curf2.d | |- ( ph -> D e. Cat ) |
|
| 5 | curf2.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curf2.b | |- B = ( Base ` D ) |
|
| 7 | curf2.h | |- H = ( Hom ` C ) |
|
| 8 | curf2.i | |- I = ( Id ` D ) |
|
| 9 | curf2.x | |- ( ph -> X e. A ) |
|
| 10 | curf2.y | |- ( ph -> Y e. A ) |
|
| 11 | curf2.k | |- ( ph -> K e. ( X H Y ) ) |
|
| 12 | curf2.l | |- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
|
| 13 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 14 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 15 | 1 2 3 4 5 6 13 14 7 8 | curfval | |- ( ph -> G = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |
| 16 | 2 | fvexi | |- A e. _V |
| 17 | 16 | mptex | |- ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) e. _V |
| 18 | 16 16 | mpoex | |- ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) e. _V |
| 19 | 17 18 | op2ndd | |- ( G = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. -> ( 2nd ` G ) = ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) ) |
| 20 | 15 19 | syl | |- ( ph -> ( 2nd ` G ) = ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) ) |
| 21 | 10 | adantr | |- ( ( ph /\ x = X ) -> Y e. A ) |
| 22 | ovex | |- ( x H y ) e. _V |
|
| 23 | 22 | mptex | |- ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) e. _V |
| 24 | 23 | a1i | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) e. _V ) |
| 25 | 11 | adantr | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> K e. ( X H Y ) ) |
| 26 | simprl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
|
| 27 | simprr | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
|
| 28 | 26 27 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
| 29 | 25 28 | eleqtrrd | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> K e. ( x H y ) ) |
| 30 | 6 | fvexi | |- B e. _V |
| 31 | 30 | mptex | |- ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) e. _V |
| 32 | 31 | a1i | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) e. _V ) |
| 33 | simplrl | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> x = X ) |
|
| 34 | 33 | opeq1d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> <. x , z >. = <. X , z >. ) |
| 35 | simplrr | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> y = Y ) |
|
| 36 | 35 | opeq1d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> <. y , z >. = <. Y , z >. ) |
| 37 | 34 36 | oveq12d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( <. x , z >. ( 2nd ` F ) <. y , z >. ) = ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ) |
| 38 | simpr | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> g = K ) |
|
| 39 | eqidd | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( I ` z ) = ( I ` z ) ) |
|
| 40 | 37 38 39 | oveq123d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) = ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) |
| 41 | 40 | mpteq2dv | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
| 42 | 29 32 41 | fvmptdv2 | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( X ( 2nd ` G ) Y ) = ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) -> ( ( X ( 2nd ` G ) Y ) ` K ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) ) |
| 43 | 9 21 24 42 | ovmpodv | |- ( ph -> ( ( 2nd ` G ) = ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) -> ( ( X ( 2nd ` G ) Y ) ` K ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) ) |
| 44 | 20 43 | mpd | |- ( ph -> ( ( X ( 2nd ` G ) Y ) ` K ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
| 45 | 12 44 | eqtrid | |- ( ph -> L = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |