This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpcbas.t | |- T = ( C Xc. D ) |
|
| xpcbas.x | |- X = ( Base ` C ) |
||
| xpcbas.y | |- Y = ( Base ` D ) |
||
| Assertion | xpcbas | |- ( X X. Y ) = ( Base ` T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcbas.t | |- T = ( C Xc. D ) |
|
| 2 | xpcbas.x | |- X = ( Base ` C ) |
|
| 3 | xpcbas.y | |- Y = ( Base ` D ) |
|
| 4 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 5 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 6 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 7 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 8 | simpl | |- ( ( C e. _V /\ D e. _V ) -> C e. _V ) |
|
| 9 | simpr | |- ( ( C e. _V /\ D e. _V ) -> D e. _V ) |
|
| 10 | eqidd | |- ( ( C e. _V /\ D e. _V ) -> ( X X. Y ) = ( X X. Y ) ) |
|
| 11 | eqidd | |- ( ( C e. _V /\ D e. _V ) -> ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) = ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) ) |
|
| 12 | eqidd | |- ( ( C e. _V /\ D e. _V ) -> ( x e. ( ( X X. Y ) X. ( X X. Y ) ) , y e. ( X X. Y ) |-> ( g e. ( ( 2nd ` x ) ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) y ) , f e. ( ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) ` x ) |-> <. ( ( 1st ` g ) ( <. ( 1st ` ( 1st ` x ) ) , ( 1st ` ( 2nd ` x ) ) >. ( comp ` C ) ( 1st ` y ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` ( 1st ` x ) ) , ( 2nd ` ( 2nd ` x ) ) >. ( comp ` D ) ( 2nd ` y ) ) ( 2nd ` f ) ) >. ) ) = ( x e. ( ( X X. Y ) X. ( X X. Y ) ) , y e. ( X X. Y ) |-> ( g e. ( ( 2nd ` x ) ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) y ) , f e. ( ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) ` x ) |-> <. ( ( 1st ` g ) ( <. ( 1st ` ( 1st ` x ) ) , ( 1st ` ( 2nd ` x ) ) >. ( comp ` C ) ( 1st ` y ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` ( 1st ` x ) ) , ( 2nd ` ( 2nd ` x ) ) >. ( comp ` D ) ( 2nd ` y ) ) ( 2nd ` f ) ) >. ) ) ) |
|
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | xpcval | |- ( ( C e. _V /\ D e. _V ) -> T = { <. ( Base ` ndx ) , ( X X. Y ) >. , <. ( Hom ` ndx ) , ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) >. , <. ( comp ` ndx ) , ( x e. ( ( X X. Y ) X. ( X X. Y ) ) , y e. ( X X. Y ) |-> ( g e. ( ( 2nd ` x ) ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) y ) , f e. ( ( u e. ( X X. Y ) , v e. ( X X. Y ) |-> ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) ` x ) |-> <. ( ( 1st ` g ) ( <. ( 1st ` ( 1st ` x ) ) , ( 1st ` ( 2nd ` x ) ) >. ( comp ` C ) ( 1st ` y ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` ( 1st ` x ) ) , ( 2nd ` ( 2nd ` x ) ) >. ( comp ` D ) ( 2nd ` y ) ) ( 2nd ` f ) ) >. ) ) >. } ) |
| 14 | 2 | fvexi | |- X e. _V |
| 15 | 3 | fvexi | |- Y e. _V |
| 16 | 14 15 | xpex | |- ( X X. Y ) e. _V |
| 17 | 16 | a1i | |- ( ( C e. _V /\ D e. _V ) -> ( X X. Y ) e. _V ) |
| 18 | 13 17 | estrreslem1 | |- ( ( C e. _V /\ D e. _V ) -> ( X X. Y ) = ( Base ` T ) ) |
| 19 | base0 | |- (/) = ( Base ` (/) ) |
|
| 20 | fvprc | |- ( -. C e. _V -> ( Base ` C ) = (/) ) |
|
| 21 | 2 20 | eqtrid | |- ( -. C e. _V -> X = (/) ) |
| 22 | fvprc | |- ( -. D e. _V -> ( Base ` D ) = (/) ) |
|
| 23 | 3 22 | eqtrid | |- ( -. D e. _V -> Y = (/) ) |
| 24 | 21 23 | orim12i | |- ( ( -. C e. _V \/ -. D e. _V ) -> ( X = (/) \/ Y = (/) ) ) |
| 25 | ianor | |- ( -. ( C e. _V /\ D e. _V ) <-> ( -. C e. _V \/ -. D e. _V ) ) |
|
| 26 | xpeq0 | |- ( ( X X. Y ) = (/) <-> ( X = (/) \/ Y = (/) ) ) |
|
| 27 | 24 25 26 | 3imtr4i | |- ( -. ( C e. _V /\ D e. _V ) -> ( X X. Y ) = (/) ) |
| 28 | fnxpc | |- Xc. Fn ( _V X. _V ) |
|
| 29 | fndm | |- ( Xc. Fn ( _V X. _V ) -> dom Xc. = ( _V X. _V ) ) |
|
| 30 | 28 29 | ax-mp | |- dom Xc. = ( _V X. _V ) |
| 31 | 30 | ndmov | |- ( -. ( C e. _V /\ D e. _V ) -> ( C Xc. D ) = (/) ) |
| 32 | 1 31 | eqtrid | |- ( -. ( C e. _V /\ D e. _V ) -> T = (/) ) |
| 33 | 32 | fveq2d | |- ( -. ( C e. _V /\ D e. _V ) -> ( Base ` T ) = ( Base ` (/) ) ) |
| 34 | 19 27 33 | 3eqtr4a | |- ( -. ( C e. _V /\ D e. _V ) -> ( X X. Y ) = ( Base ` T ) ) |
| 35 | 18 34 | pm2.61i | |- ( X X. Y ) = ( Base ` T ) |