This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given by the maps-to notation. (This is the operation analogue of fvmpt2 .) (Contributed by NM, 21-Feb-2004) (Revised by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovmpt4g.3 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | ovmpt4g | |- ( ( x e. A /\ y e. B /\ C e. V ) -> ( x F y ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt4g.3 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | elisset | |- ( C e. V -> E. z z = C ) |
|
| 3 | moeq | |- E* z z = C |
|
| 4 | 3 | a1i | |- ( ( x e. A /\ y e. B ) -> E* z z = C ) |
| 5 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 6 | 1 5 | eqtri | |- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 7 | 4 6 | ovidi | |- ( ( x e. A /\ y e. B ) -> ( z = C -> ( x F y ) = z ) ) |
| 8 | eqeq2 | |- ( z = C -> ( ( x F y ) = z <-> ( x F y ) = C ) ) |
|
| 9 | 7 8 | mpbidi | |- ( ( x e. A /\ y e. B ) -> ( z = C -> ( x F y ) = C ) ) |
| 10 | 9 | exlimdv | |- ( ( x e. A /\ y e. B ) -> ( E. z z = C -> ( x F y ) = C ) ) |
| 11 | 2 10 | syl5 | |- ( ( x e. A /\ y e. B ) -> ( C e. V -> ( x F y ) = C ) ) |
| 12 | 11 | 3impia | |- ( ( x e. A /\ y e. B /\ C e. V ) -> ( x F y ) = C ) |