This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucid.q | |- Q = ( C FuncCat D ) |
|
| fucid.i | |- I = ( Id ` Q ) |
||
| fucid.1 | |- .1. = ( Id ` D ) |
||
| fucid.f | |- ( ph -> F e. ( C Func D ) ) |
||
| Assertion | fucid | |- ( ph -> ( I ` F ) = ( .1. o. ( 1st ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucid.q | |- Q = ( C FuncCat D ) |
|
| 2 | fucid.i | |- I = ( Id ` Q ) |
|
| 3 | fucid.1 | |- .1. = ( Id ` D ) |
|
| 4 | fucid.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 7 | 6 | simpld | |- ( ph -> C e. Cat ) |
| 8 | 6 | simprd | |- ( ph -> D e. Cat ) |
| 9 | 1 7 8 3 | fuccatid | |- ( ph -> ( Q e. Cat /\ ( Id ` Q ) = ( f e. ( C Func D ) |-> ( .1. o. ( 1st ` f ) ) ) ) ) |
| 10 | 9 | simprd | |- ( ph -> ( Id ` Q ) = ( f e. ( C Func D ) |-> ( .1. o. ( 1st ` f ) ) ) ) |
| 11 | 2 10 | eqtrid | |- ( ph -> I = ( f e. ( C Func D ) |-> ( .1. o. ( 1st ` f ) ) ) ) |
| 12 | simpr | |- ( ( ph /\ f = F ) -> f = F ) |
|
| 13 | 12 | fveq2d | |- ( ( ph /\ f = F ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 14 | 13 | coeq2d | |- ( ( ph /\ f = F ) -> ( .1. o. ( 1st ` f ) ) = ( .1. o. ( 1st ` F ) ) ) |
| 15 | 3 | fvexi | |- .1. e. _V |
| 16 | fvex | |- ( 1st ` F ) e. _V |
|
| 17 | 15 16 | coex | |- ( .1. o. ( 1st ` F ) ) e. _V |
| 18 | 17 | a1i | |- ( ph -> ( .1. o. ( 1st ` F ) ) e. _V ) |
| 19 | 11 14 4 18 | fvmptd | |- ( ph -> ( I ` F ) = ( .1. o. ( 1st ` F ) ) ) |