This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpcco2.t | |- T = ( C Xc. D ) |
|
| xpcco2.x | |- X = ( Base ` C ) |
||
| xpcco2.y | |- Y = ( Base ` D ) |
||
| xpcco2.h | |- H = ( Hom ` C ) |
||
| xpcco2.j | |- J = ( Hom ` D ) |
||
| xpcco2.m | |- ( ph -> M e. X ) |
||
| xpcco2.n | |- ( ph -> N e. Y ) |
||
| xpcco2.p | |- ( ph -> P e. X ) |
||
| xpcco2.q | |- ( ph -> Q e. Y ) |
||
| xpchom2.k | |- K = ( Hom ` T ) |
||
| Assertion | xpchom2 | |- ( ph -> ( <. M , N >. K <. P , Q >. ) = ( ( M H P ) X. ( N J Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcco2.t | |- T = ( C Xc. D ) |
|
| 2 | xpcco2.x | |- X = ( Base ` C ) |
|
| 3 | xpcco2.y | |- Y = ( Base ` D ) |
|
| 4 | xpcco2.h | |- H = ( Hom ` C ) |
|
| 5 | xpcco2.j | |- J = ( Hom ` D ) |
|
| 6 | xpcco2.m | |- ( ph -> M e. X ) |
|
| 7 | xpcco2.n | |- ( ph -> N e. Y ) |
|
| 8 | xpcco2.p | |- ( ph -> P e. X ) |
|
| 9 | xpcco2.q | |- ( ph -> Q e. Y ) |
|
| 10 | xpchom2.k | |- K = ( Hom ` T ) |
|
| 11 | 1 2 3 | xpcbas | |- ( X X. Y ) = ( Base ` T ) |
| 12 | 6 7 | opelxpd | |- ( ph -> <. M , N >. e. ( X X. Y ) ) |
| 13 | 8 9 | opelxpd | |- ( ph -> <. P , Q >. e. ( X X. Y ) ) |
| 14 | 1 11 4 5 10 12 13 | xpchom | |- ( ph -> ( <. M , N >. K <. P , Q >. ) = ( ( ( 1st ` <. M , N >. ) H ( 1st ` <. P , Q >. ) ) X. ( ( 2nd ` <. M , N >. ) J ( 2nd ` <. P , Q >. ) ) ) ) |
| 15 | op1stg | |- ( ( M e. X /\ N e. Y ) -> ( 1st ` <. M , N >. ) = M ) |
|
| 16 | 6 7 15 | syl2anc | |- ( ph -> ( 1st ` <. M , N >. ) = M ) |
| 17 | op1stg | |- ( ( P e. X /\ Q e. Y ) -> ( 1st ` <. P , Q >. ) = P ) |
|
| 18 | 8 9 17 | syl2anc | |- ( ph -> ( 1st ` <. P , Q >. ) = P ) |
| 19 | 16 18 | oveq12d | |- ( ph -> ( ( 1st ` <. M , N >. ) H ( 1st ` <. P , Q >. ) ) = ( M H P ) ) |
| 20 | op2ndg | |- ( ( M e. X /\ N e. Y ) -> ( 2nd ` <. M , N >. ) = N ) |
|
| 21 | 6 7 20 | syl2anc | |- ( ph -> ( 2nd ` <. M , N >. ) = N ) |
| 22 | op2ndg | |- ( ( P e. X /\ Q e. Y ) -> ( 2nd ` <. P , Q >. ) = Q ) |
|
| 23 | 8 9 22 | syl2anc | |- ( ph -> ( 2nd ` <. P , Q >. ) = Q ) |
| 24 | 21 23 | oveq12d | |- ( ph -> ( ( 2nd ` <. M , N >. ) J ( 2nd ` <. P , Q >. ) ) = ( N J Q ) ) |
| 25 | 19 24 | xpeq12d | |- ( ph -> ( ( ( 1st ` <. M , N >. ) H ( 1st ` <. P , Q >. ) ) X. ( ( 2nd ` <. M , N >. ) J ( 2nd ` <. P , Q >. ) ) ) = ( ( M H P ) X. ( N J Q ) ) ) |
| 26 | 14 25 | eqtrd | |- ( ph -> ( <. M , N >. K <. P , Q >. ) = ( ( M H P ) X. ( N J Q ) ) ) |