This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catidcl.b | |- B = ( Base ` C ) |
|
| catidcl.h | |- H = ( Hom ` C ) |
||
| catidcl.i | |- .1. = ( Id ` C ) |
||
| catidcl.c | |- ( ph -> C e. Cat ) |
||
| catidcl.x | |- ( ph -> X e. B ) |
||
| Assertion | catidcl | |- ( ph -> ( .1. ` X ) e. ( X H X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | |- B = ( Base ` C ) |
|
| 2 | catidcl.h | |- H = ( Hom ` C ) |
|
| 3 | catidcl.i | |- .1. = ( Id ` C ) |
|
| 4 | catidcl.c | |- ( ph -> C e. Cat ) |
|
| 5 | catidcl.x | |- ( ph -> X e. B ) |
|
| 6 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 7 | 1 2 6 4 3 5 | cidval | |- ( ph -> ( .1. ` X ) = ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. ( comp ` C ) X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. ( comp ` C ) y ) g ) = f ) ) ) |
| 8 | 1 2 6 4 5 | catideu | |- ( ph -> E! g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. ( comp ` C ) X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. ( comp ` C ) y ) g ) = f ) ) |
| 9 | riotacl | |- ( E! g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. ( comp ` C ) X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. ( comp ` C ) y ) g ) = f ) -> ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. ( comp ` C ) X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. ( comp ` C ) y ) g ) = f ) ) e. ( X H X ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. ( comp ` C ) X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. ( comp ` C ) y ) g ) = f ) ) e. ( X H X ) ) |
| 11 | 7 10 | eqeltrd | |- ( ph -> ( .1. ` X ) e. ( X H X ) ) |