This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| curfval.a | |- A = ( Base ` C ) |
||
| curfval.c | |- ( ph -> C e. Cat ) |
||
| curfval.d | |- ( ph -> D e. Cat ) |
||
| curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curfval.b | |- B = ( Base ` D ) |
||
| curf1.x | |- ( ph -> X e. A ) |
||
| curf1.k | |- K = ( ( 1st ` G ) ` X ) |
||
| curf11.y | |- ( ph -> Y e. B ) |
||
| Assertion | curf11 | |- ( ph -> ( ( 1st ` K ) ` Y ) = ( X ( 1st ` F ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curfval.a | |- A = ( Base ` C ) |
|
| 3 | curfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | curfval.d | |- ( ph -> D e. Cat ) |
|
| 5 | curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curfval.b | |- B = ( Base ` D ) |
|
| 7 | curf1.x | |- ( ph -> X e. A ) |
|
| 8 | curf1.k | |- K = ( ( 1st ` G ) ` X ) |
|
| 9 | curf11.y | |- ( ph -> Y e. B ) |
|
| 10 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 11 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 12 | 1 2 3 4 5 6 7 8 10 11 | curf1 | |- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 13 | 6 | fvexi | |- B e. _V |
| 14 | 13 | mptex | |- ( y e. B |-> ( X ( 1st ` F ) y ) ) e. _V |
| 15 | 13 13 | mpoex | |- ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) e. _V |
| 16 | 14 15 | op1std | |- ( K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. -> ( 1st ` K ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
| 17 | 12 16 | syl | |- ( ph -> ( 1st ` K ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
| 18 | simpr | |- ( ( ph /\ y = Y ) -> y = Y ) |
|
| 19 | 18 | oveq2d | |- ( ( ph /\ y = Y ) -> ( X ( 1st ` F ) y ) = ( X ( 1st ` F ) Y ) ) |
| 20 | ovexd | |- ( ph -> ( X ( 1st ` F ) Y ) e. _V ) |
|
| 21 | 17 19 9 20 | fvmptd | |- ( ph -> ( ( 1st ` K ) ` Y ) = ( X ( 1st ` F ) Y ) ) |