This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpcco2.t | |- T = ( C Xc. D ) |
|
| xpcco2.x | |- X = ( Base ` C ) |
||
| xpcco2.y | |- Y = ( Base ` D ) |
||
| xpcco2.h | |- H = ( Hom ` C ) |
||
| xpcco2.j | |- J = ( Hom ` D ) |
||
| xpcco2.m | |- ( ph -> M e. X ) |
||
| xpcco2.n | |- ( ph -> N e. Y ) |
||
| xpcco2.p | |- ( ph -> P e. X ) |
||
| xpcco2.q | |- ( ph -> Q e. Y ) |
||
| xpcco2.o1 | |- .x. = ( comp ` C ) |
||
| xpcco2.o2 | |- .xb = ( comp ` D ) |
||
| xpcco2.o | |- O = ( comp ` T ) |
||
| xpcco2.r | |- ( ph -> R e. X ) |
||
| xpcco2.s | |- ( ph -> S e. Y ) |
||
| xpcco2.f | |- ( ph -> F e. ( M H P ) ) |
||
| xpcco2.g | |- ( ph -> G e. ( N J Q ) ) |
||
| xpcco2.k | |- ( ph -> K e. ( P H R ) ) |
||
| xpcco2.l | |- ( ph -> L e. ( Q J S ) ) |
||
| Assertion | xpcco2 | |- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) = <. ( K ( <. M , P >. .x. R ) F ) , ( L ( <. N , Q >. .xb S ) G ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcco2.t | |- T = ( C Xc. D ) |
|
| 2 | xpcco2.x | |- X = ( Base ` C ) |
|
| 3 | xpcco2.y | |- Y = ( Base ` D ) |
|
| 4 | xpcco2.h | |- H = ( Hom ` C ) |
|
| 5 | xpcco2.j | |- J = ( Hom ` D ) |
|
| 6 | xpcco2.m | |- ( ph -> M e. X ) |
|
| 7 | xpcco2.n | |- ( ph -> N e. Y ) |
|
| 8 | xpcco2.p | |- ( ph -> P e. X ) |
|
| 9 | xpcco2.q | |- ( ph -> Q e. Y ) |
|
| 10 | xpcco2.o1 | |- .x. = ( comp ` C ) |
|
| 11 | xpcco2.o2 | |- .xb = ( comp ` D ) |
|
| 12 | xpcco2.o | |- O = ( comp ` T ) |
|
| 13 | xpcco2.r | |- ( ph -> R e. X ) |
|
| 14 | xpcco2.s | |- ( ph -> S e. Y ) |
|
| 15 | xpcco2.f | |- ( ph -> F e. ( M H P ) ) |
|
| 16 | xpcco2.g | |- ( ph -> G e. ( N J Q ) ) |
|
| 17 | xpcco2.k | |- ( ph -> K e. ( P H R ) ) |
|
| 18 | xpcco2.l | |- ( ph -> L e. ( Q J S ) ) |
|
| 19 | 1 2 3 | xpcbas | |- ( X X. Y ) = ( Base ` T ) |
| 20 | eqid | |- ( Hom ` T ) = ( Hom ` T ) |
|
| 21 | 6 7 | opelxpd | |- ( ph -> <. M , N >. e. ( X X. Y ) ) |
| 22 | 8 9 | opelxpd | |- ( ph -> <. P , Q >. e. ( X X. Y ) ) |
| 23 | 13 14 | opelxpd | |- ( ph -> <. R , S >. e. ( X X. Y ) ) |
| 24 | 15 16 | opelxpd | |- ( ph -> <. F , G >. e. ( ( M H P ) X. ( N J Q ) ) ) |
| 25 | 1 2 3 4 5 6 7 8 9 20 | xpchom2 | |- ( ph -> ( <. M , N >. ( Hom ` T ) <. P , Q >. ) = ( ( M H P ) X. ( N J Q ) ) ) |
| 26 | 24 25 | eleqtrrd | |- ( ph -> <. F , G >. e. ( <. M , N >. ( Hom ` T ) <. P , Q >. ) ) |
| 27 | 17 18 | opelxpd | |- ( ph -> <. K , L >. e. ( ( P H R ) X. ( Q J S ) ) ) |
| 28 | 1 2 3 4 5 8 9 13 14 20 | xpchom2 | |- ( ph -> ( <. P , Q >. ( Hom ` T ) <. R , S >. ) = ( ( P H R ) X. ( Q J S ) ) ) |
| 29 | 27 28 | eleqtrrd | |- ( ph -> <. K , L >. e. ( <. P , Q >. ( Hom ` T ) <. R , S >. ) ) |
| 30 | 1 19 20 10 11 12 21 22 23 26 29 | xpcco | |- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) = <. ( ( 1st ` <. K , L >. ) ( <. ( 1st ` <. M , N >. ) , ( 1st ` <. P , Q >. ) >. .x. ( 1st ` <. R , S >. ) ) ( 1st ` <. F , G >. ) ) , ( ( 2nd ` <. K , L >. ) ( <. ( 2nd ` <. M , N >. ) , ( 2nd ` <. P , Q >. ) >. .xb ( 2nd ` <. R , S >. ) ) ( 2nd ` <. F , G >. ) ) >. ) |
| 31 | op1stg | |- ( ( M e. X /\ N e. Y ) -> ( 1st ` <. M , N >. ) = M ) |
|
| 32 | 6 7 31 | syl2anc | |- ( ph -> ( 1st ` <. M , N >. ) = M ) |
| 33 | op1stg | |- ( ( P e. X /\ Q e. Y ) -> ( 1st ` <. P , Q >. ) = P ) |
|
| 34 | 8 9 33 | syl2anc | |- ( ph -> ( 1st ` <. P , Q >. ) = P ) |
| 35 | 32 34 | opeq12d | |- ( ph -> <. ( 1st ` <. M , N >. ) , ( 1st ` <. P , Q >. ) >. = <. M , P >. ) |
| 36 | op1stg | |- ( ( R e. X /\ S e. Y ) -> ( 1st ` <. R , S >. ) = R ) |
|
| 37 | 13 14 36 | syl2anc | |- ( ph -> ( 1st ` <. R , S >. ) = R ) |
| 38 | 35 37 | oveq12d | |- ( ph -> ( <. ( 1st ` <. M , N >. ) , ( 1st ` <. P , Q >. ) >. .x. ( 1st ` <. R , S >. ) ) = ( <. M , P >. .x. R ) ) |
| 39 | op1stg | |- ( ( K e. ( P H R ) /\ L e. ( Q J S ) ) -> ( 1st ` <. K , L >. ) = K ) |
|
| 40 | 17 18 39 | syl2anc | |- ( ph -> ( 1st ` <. K , L >. ) = K ) |
| 41 | op1stg | |- ( ( F e. ( M H P ) /\ G e. ( N J Q ) ) -> ( 1st ` <. F , G >. ) = F ) |
|
| 42 | 15 16 41 | syl2anc | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 43 | 38 40 42 | oveq123d | |- ( ph -> ( ( 1st ` <. K , L >. ) ( <. ( 1st ` <. M , N >. ) , ( 1st ` <. P , Q >. ) >. .x. ( 1st ` <. R , S >. ) ) ( 1st ` <. F , G >. ) ) = ( K ( <. M , P >. .x. R ) F ) ) |
| 44 | op2ndg | |- ( ( M e. X /\ N e. Y ) -> ( 2nd ` <. M , N >. ) = N ) |
|
| 45 | 6 7 44 | syl2anc | |- ( ph -> ( 2nd ` <. M , N >. ) = N ) |
| 46 | op2ndg | |- ( ( P e. X /\ Q e. Y ) -> ( 2nd ` <. P , Q >. ) = Q ) |
|
| 47 | 8 9 46 | syl2anc | |- ( ph -> ( 2nd ` <. P , Q >. ) = Q ) |
| 48 | 45 47 | opeq12d | |- ( ph -> <. ( 2nd ` <. M , N >. ) , ( 2nd ` <. P , Q >. ) >. = <. N , Q >. ) |
| 49 | op2ndg | |- ( ( R e. X /\ S e. Y ) -> ( 2nd ` <. R , S >. ) = S ) |
|
| 50 | 13 14 49 | syl2anc | |- ( ph -> ( 2nd ` <. R , S >. ) = S ) |
| 51 | 48 50 | oveq12d | |- ( ph -> ( <. ( 2nd ` <. M , N >. ) , ( 2nd ` <. P , Q >. ) >. .xb ( 2nd ` <. R , S >. ) ) = ( <. N , Q >. .xb S ) ) |
| 52 | op2ndg | |- ( ( K e. ( P H R ) /\ L e. ( Q J S ) ) -> ( 2nd ` <. K , L >. ) = L ) |
|
| 53 | 17 18 52 | syl2anc | |- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
| 54 | op2ndg | |- ( ( F e. ( M H P ) /\ G e. ( N J Q ) ) -> ( 2nd ` <. F , G >. ) = G ) |
|
| 55 | 15 16 54 | syl2anc | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 56 | 51 53 55 | oveq123d | |- ( ph -> ( ( 2nd ` <. K , L >. ) ( <. ( 2nd ` <. M , N >. ) , ( 2nd ` <. P , Q >. ) >. .xb ( 2nd ` <. R , S >. ) ) ( 2nd ` <. F , G >. ) ) = ( L ( <. N , Q >. .xb S ) G ) ) |
| 57 | 43 56 | opeq12d | |- ( ph -> <. ( ( 1st ` <. K , L >. ) ( <. ( 1st ` <. M , N >. ) , ( 1st ` <. P , Q >. ) >. .x. ( 1st ` <. R , S >. ) ) ( 1st ` <. F , G >. ) ) , ( ( 2nd ` <. K , L >. ) ( <. ( 2nd ` <. M , N >. ) , ( 2nd ` <. P , Q >. ) >. .xb ( 2nd ` <. R , S >. ) ) ( 2nd ` <. F , G >. ) ) >. = <. ( K ( <. M , P >. .x. R ) F ) , ( L ( <. N , Q >. .xb S ) G ) >. ) |
| 58 | 30 57 | eqtrd | |- ( ph -> ( <. K , L >. ( <. <. M , N >. , <. P , Q >. >. O <. R , S >. ) <. F , G >. ) = <. ( K ( <. M , P >. .x. R ) F ) , ( L ( <. N , Q >. .xb S ) G ) >. ) |