This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcco.b | |- B = ( Base ` D ) |
|
| funcco.h | |- H = ( Hom ` D ) |
||
| funcco.o | |- .x. = ( comp ` D ) |
||
| funcco.O | |- O = ( comp ` E ) |
||
| funcco.f | |- ( ph -> F ( D Func E ) G ) |
||
| funcco.x | |- ( ph -> X e. B ) |
||
| funcco.y | |- ( ph -> Y e. B ) |
||
| funcco.z | |- ( ph -> Z e. B ) |
||
| funcco.m | |- ( ph -> M e. ( X H Y ) ) |
||
| funcco.n | |- ( ph -> N e. ( Y H Z ) ) |
||
| Assertion | funcco | |- ( ph -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcco.b | |- B = ( Base ` D ) |
|
| 2 | funcco.h | |- H = ( Hom ` D ) |
|
| 3 | funcco.o | |- .x. = ( comp ` D ) |
|
| 4 | funcco.O | |- O = ( comp ` E ) |
|
| 5 | funcco.f | |- ( ph -> F ( D Func E ) G ) |
|
| 6 | funcco.x | |- ( ph -> X e. B ) |
|
| 7 | funcco.y | |- ( ph -> Y e. B ) |
|
| 8 | funcco.z | |- ( ph -> Z e. B ) |
|
| 9 | funcco.m | |- ( ph -> M e. ( X H Y ) ) |
|
| 10 | funcco.n | |- ( ph -> N e. ( Y H Z ) ) |
|
| 11 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 12 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 13 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 14 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 15 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 16 | 5 15 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 17 | funcrcl | |- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 19 | 18 | simpld | |- ( ph -> D e. Cat ) |
| 20 | 18 | simprd | |- ( ph -> E e. Cat ) |
| 21 | 1 11 2 12 13 14 3 4 19 20 | isfunc | |- ( ph -> ( F ( D Func E ) G <-> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` E ) ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) ) |
| 22 | 5 21 | mpbid | |- ( ph -> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` E ) ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) |
| 23 | 22 | simp3d | |- ( ph -> A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) |
| 24 | 7 | adantr | |- ( ( ph /\ x = X ) -> Y e. B ) |
| 25 | 8 | ad2antrr | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> Z e. B ) |
| 26 | 9 | ad3antrrr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> M e. ( X H Y ) ) |
| 27 | simpllr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> x = X ) |
|
| 28 | simplr | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> y = Y ) |
|
| 29 | 27 28 | oveq12d | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( x H y ) = ( X H Y ) ) |
| 30 | 26 29 | eleqtrrd | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> M e. ( x H y ) ) |
| 31 | 10 | ad4antr | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> N e. ( Y H Z ) ) |
| 32 | simpllr | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> y = Y ) |
|
| 33 | simplr | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> z = Z ) |
|
| 34 | 32 33 | oveq12d | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> ( y H z ) = ( Y H Z ) ) |
| 35 | 31 34 | eleqtrrd | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> N e. ( y H z ) ) |
| 36 | simp-5r | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> x = X ) |
|
| 37 | simpllr | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> z = Z ) |
|
| 38 | 36 37 | oveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( x G z ) = ( X G Z ) ) |
| 39 | simp-4r | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> y = Y ) |
|
| 40 | 36 39 | opeq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> <. x , y >. = <. X , Y >. ) |
| 41 | 40 37 | oveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( <. x , y >. .x. z ) = ( <. X , Y >. .x. Z ) ) |
| 42 | simpr | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> n = N ) |
|
| 43 | simplr | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> m = M ) |
|
| 44 | 41 42 43 | oveq123d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( n ( <. x , y >. .x. z ) m ) = ( N ( <. X , Y >. .x. Z ) M ) ) |
| 45 | 38 44 | fveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) ) |
| 46 | 36 | fveq2d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( F ` x ) = ( F ` X ) ) |
| 47 | 39 | fveq2d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( F ` y ) = ( F ` Y ) ) |
| 48 | 46 47 | opeq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> <. ( F ` x ) , ( F ` y ) >. = <. ( F ` X ) , ( F ` Y ) >. ) |
| 49 | 37 | fveq2d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( F ` z ) = ( F ` Z ) ) |
| 50 | 48 49 | oveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) = ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ) |
| 51 | 39 37 | oveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( y G z ) = ( Y G Z ) ) |
| 52 | 51 42 | fveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( y G z ) ` n ) = ( ( Y G Z ) ` N ) ) |
| 53 | 36 39 | oveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( x G y ) = ( X G Y ) ) |
| 54 | 53 43 | fveq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( x G y ) ` m ) = ( ( X G Y ) ` M ) ) |
| 55 | 50 52 54 | oveq123d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) |
| 56 | 45 55 | eqeq12d | |- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) <-> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 57 | 35 56 | rspcdv | |- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> ( A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 58 | 30 57 | rspcimdv | |- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 59 | 25 58 | rspcimdv | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 60 | 24 59 | rspcimdv | |- ( ( ph /\ x = X ) -> ( A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 61 | 60 | adantld | |- ( ( ph /\ x = X ) -> ( ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 62 | 6 61 | rspcimdv | |- ( ph -> ( A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 63 | 23 62 | mpd | |- ( ph -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) |