This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| curfval.a | |- A = ( Base ` C ) |
||
| curfval.c | |- ( ph -> C e. Cat ) |
||
| curfval.d | |- ( ph -> D e. Cat ) |
||
| curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curfval.b | |- B = ( Base ` D ) |
||
| curfval.j | |- J = ( Hom ` D ) |
||
| curfval.1 | |- .1. = ( Id ` C ) |
||
| curfval.h | |- H = ( Hom ` C ) |
||
| curfval.i | |- I = ( Id ` D ) |
||
| Assertion | curfval | |- ( ph -> G = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curfval.a | |- A = ( Base ` C ) |
|
| 3 | curfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | curfval.d | |- ( ph -> D e. Cat ) |
|
| 5 | curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curfval.b | |- B = ( Base ` D ) |
|
| 7 | curfval.j | |- J = ( Hom ` D ) |
|
| 8 | curfval.1 | |- .1. = ( Id ` C ) |
|
| 9 | curfval.h | |- H = ( Hom ` C ) |
|
| 10 | curfval.i | |- I = ( Id ` D ) |
|
| 11 | df-curf | |- curryF = ( e e. _V , f e. _V |-> [_ ( 1st ` e ) / c ]_ [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. ) |
|
| 12 | 11 | a1i | |- ( ph -> curryF = ( e e. _V , f e. _V |-> [_ ( 1st ` e ) / c ]_ [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. ) ) |
| 13 | fvexd | |- ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) -> ( 1st ` e ) e. _V ) |
|
| 14 | simprl | |- ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) -> e = <. C , D >. ) |
|
| 15 | 14 | fveq2d | |- ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) -> ( 1st ` e ) = ( 1st ` <. C , D >. ) ) |
| 16 | op1stg | |- ( ( C e. Cat /\ D e. Cat ) -> ( 1st ` <. C , D >. ) = C ) |
|
| 17 | 3 4 16 | syl2anc | |- ( ph -> ( 1st ` <. C , D >. ) = C ) |
| 18 | 17 | adantr | |- ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) -> ( 1st ` <. C , D >. ) = C ) |
| 19 | 15 18 | eqtrd | |- ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) -> ( 1st ` e ) = C ) |
| 20 | fvexd | |- ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) -> ( 2nd ` e ) e. _V ) |
|
| 21 | 14 | adantr | |- ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) -> e = <. C , D >. ) |
| 22 | 21 | fveq2d | |- ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) -> ( 2nd ` e ) = ( 2nd ` <. C , D >. ) ) |
| 23 | op2ndg | |- ( ( C e. Cat /\ D e. Cat ) -> ( 2nd ` <. C , D >. ) = D ) |
|
| 24 | 3 4 23 | syl2anc | |- ( ph -> ( 2nd ` <. C , D >. ) = D ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) -> ( 2nd ` <. C , D >. ) = D ) |
| 26 | 22 25 | eqtrd | |- ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) -> ( 2nd ` e ) = D ) |
| 27 | simplr | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> c = C ) |
|
| 28 | 27 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Base ` c ) = ( Base ` C ) ) |
| 29 | 28 2 | eqtr4di | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Base ` c ) = A ) |
| 30 | simpr | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> d = D ) |
|
| 31 | 30 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Base ` d ) = ( Base ` D ) ) |
| 32 | 31 6 | eqtr4di | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Base ` d ) = B ) |
| 33 | simprr | |- ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) -> f = F ) |
|
| 34 | 33 | ad2antrr | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> f = F ) |
| 35 | 34 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 36 | 35 | oveqd | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( x ( 1st ` f ) y ) = ( x ( 1st ` F ) y ) ) |
| 37 | 32 36 | mpteq12dv | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) = ( y e. B |-> ( x ( 1st ` F ) y ) ) ) |
| 38 | 30 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Hom ` d ) = ( Hom ` D ) ) |
| 39 | 38 7 | eqtr4di | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Hom ` d ) = J ) |
| 40 | 39 | oveqd | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( y ( Hom ` d ) z ) = ( y J z ) ) |
| 41 | 34 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( 2nd ` f ) = ( 2nd ` F ) ) |
| 42 | 41 | oveqd | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( <. x , y >. ( 2nd ` f ) <. x , z >. ) = ( <. x , y >. ( 2nd ` F ) <. x , z >. ) ) |
| 43 | 27 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Id ` c ) = ( Id ` C ) ) |
| 44 | 43 8 | eqtr4di | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Id ` c ) = .1. ) |
| 45 | 44 | fveq1d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( ( Id ` c ) ` x ) = ( .1. ` x ) ) |
| 46 | eqidd | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> g = g ) |
|
| 47 | 42 45 46 | oveq123d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) = ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) |
| 48 | 40 47 | mpteq12dv | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) = ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) |
| 49 | 32 32 48 | mpoeq123dv | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) ) |
| 50 | 37 49 | opeq12d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. = <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) |
| 51 | 29 50 | mpteq12dv | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) = ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 52 | 27 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Hom ` c ) = ( Hom ` C ) ) |
| 53 | 52 9 | eqtr4di | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Hom ` c ) = H ) |
| 54 | 53 | oveqd | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( x ( Hom ` c ) y ) = ( x H y ) ) |
| 55 | 41 | oveqd | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( <. x , z >. ( 2nd ` f ) <. y , z >. ) = ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ) |
| 56 | 30 | fveq2d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Id ` d ) = ( Id ` D ) ) |
| 57 | 56 10 | eqtr4di | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( Id ` d ) = I ) |
| 58 | 57 | fveq1d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( ( Id ` d ) ` z ) = ( I ` z ) ) |
| 59 | 55 46 58 | oveq123d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) = ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) |
| 60 | 32 59 | mpteq12dv | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) = ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) |
| 61 | 54 60 | mpteq12dv | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) = ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) |
| 62 | 29 29 61 | mpoeq123dv | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) = ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) ) |
| 63 | 51 62 | opeq12d | |- ( ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) /\ d = D ) -> <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |
| 64 | 20 26 63 | csbied2 | |- ( ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) /\ c = C ) -> [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |
| 65 | 13 19 64 | csbied2 | |- ( ( ph /\ ( e = <. C , D >. /\ f = F ) ) -> [_ ( 1st ` e ) / c ]_ [_ ( 2nd ` e ) / d ]_ <. ( x e. ( Base ` c ) |-> <. ( y e. ( Base ` d ) |-> ( x ( 1st ` f ) y ) ) , ( y e. ( Base ` d ) , z e. ( Base ` d ) |-> ( g e. ( y ( Hom ` d ) z ) |-> ( ( ( Id ` c ) ` x ) ( <. x , y >. ( 2nd ` f ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( g e. ( x ( Hom ` c ) y ) |-> ( z e. ( Base ` d ) |-> ( g ( <. x , z >. ( 2nd ` f ) <. y , z >. ) ( ( Id ` d ) ` z ) ) ) ) ) >. = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |
| 66 | opex | |- <. C , D >. e. _V |
|
| 67 | 66 | a1i | |- ( ph -> <. C , D >. e. _V ) |
| 68 | 5 | elexd | |- ( ph -> F e. _V ) |
| 69 | opex | |- <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. e. _V |
|
| 70 | 69 | a1i | |- ( ph -> <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. e. _V ) |
| 71 | 12 65 67 68 70 | ovmpod | |- ( ph -> ( <. C , D >. curryF F ) = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |
| 72 | 1 71 | eqtrid | |- ( ph -> G = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |