This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor maps each identity to the corresponding identity in the target category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcid.b | |- B = ( Base ` D ) |
|
| funcid.1 | |- .1. = ( Id ` D ) |
||
| funcid.i | |- I = ( Id ` E ) |
||
| funcid.f | |- ( ph -> F ( D Func E ) G ) |
||
| funcid.x | |- ( ph -> X e. B ) |
||
| Assertion | funcid | |- ( ph -> ( ( X G X ) ` ( .1. ` X ) ) = ( I ` ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcid.b | |- B = ( Base ` D ) |
|
| 2 | funcid.1 | |- .1. = ( Id ` D ) |
|
| 3 | funcid.i | |- I = ( Id ` E ) |
|
| 4 | funcid.f | |- ( ph -> F ( D Func E ) G ) |
|
| 5 | funcid.x | |- ( ph -> X e. B ) |
|
| 6 | id | |- ( x = X -> x = X ) |
|
| 7 | 6 6 | oveq12d | |- ( x = X -> ( x G x ) = ( X G X ) ) |
| 8 | fveq2 | |- ( x = X -> ( .1. ` x ) = ( .1. ` X ) ) |
|
| 9 | 7 8 | fveq12d | |- ( x = X -> ( ( x G x ) ` ( .1. ` x ) ) = ( ( X G X ) ` ( .1. ` X ) ) ) |
| 10 | 2fveq3 | |- ( x = X -> ( I ` ( F ` x ) ) = ( I ` ( F ` X ) ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = X -> ( ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) <-> ( ( X G X ) ` ( .1. ` X ) ) = ( I ` ( F ` X ) ) ) ) |
| 12 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 13 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 14 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 15 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 16 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 17 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 18 | 4 17 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 19 | funcrcl | |- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 21 | 20 | simpld | |- ( ph -> D e. Cat ) |
| 22 | 20 | simprd | |- ( ph -> E e. Cat ) |
| 23 | 1 12 13 14 2 3 15 16 21 22 | isfunc | |- ( ph -> ( F ( D Func E ) G <-> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` E ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` D ) ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x ( Hom ` D ) y ) A. n e. ( y ( Hom ` D ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) ) |
| 24 | 4 23 | mpbid | |- ( ph -> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` E ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` D ) ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x ( Hom ` D ) y ) A. n e. ( y ( Hom ` D ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) |
| 25 | 24 | simp3d | |- ( ph -> A. x e. B ( ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x ( Hom ` D ) y ) A. n e. ( y ( Hom ` D ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) |
| 26 | simpl | |- ( ( ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x ( Hom ` D ) y ) A. n e. ( y ( Hom ` D ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) -> ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) ) |
|
| 27 | 26 | ralimi | |- ( A. x e. B ( ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x ( Hom ` D ) y ) A. n e. ( y ( Hom ` D ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` D ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` E ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) -> A. x e. B ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) ) |
| 28 | 25 27 | syl | |- ( ph -> A. x e. B ( ( x G x ) ` ( .1. ` x ) ) = ( I ` ( F ` x ) ) ) |
| 29 | 11 28 5 | rspcdva | |- ( ph -> ( ( X G X ) ` ( .1. ` X ) ) = ( I ` ( F ` X ) ) ) |