This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curf2.g | |- G = ( <. C , D >. curryF F ) |
|
| curf2.a | |- A = ( Base ` C ) |
||
| curf2.c | |- ( ph -> C e. Cat ) |
||
| curf2.d | |- ( ph -> D e. Cat ) |
||
| curf2.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curf2.b | |- B = ( Base ` D ) |
||
| curf2.h | |- H = ( Hom ` C ) |
||
| curf2.i | |- I = ( Id ` D ) |
||
| curf2.x | |- ( ph -> X e. A ) |
||
| curf2.y | |- ( ph -> Y e. A ) |
||
| curf2.k | |- ( ph -> K e. ( X H Y ) ) |
||
| curf2.l | |- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
||
| curf2.n | |- N = ( D Nat E ) |
||
| Assertion | curf2cl | |- ( ph -> L e. ( ( ( 1st ` G ) ` X ) N ( ( 1st ` G ) ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curf2.a | |- A = ( Base ` C ) |
|
| 3 | curf2.c | |- ( ph -> C e. Cat ) |
|
| 4 | curf2.d | |- ( ph -> D e. Cat ) |
|
| 5 | curf2.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curf2.b | |- B = ( Base ` D ) |
|
| 7 | curf2.h | |- H = ( Hom ` C ) |
|
| 8 | curf2.i | |- I = ( Id ` D ) |
|
| 9 | curf2.x | |- ( ph -> X e. A ) |
|
| 10 | curf2.y | |- ( ph -> Y e. A ) |
|
| 11 | curf2.k | |- ( ph -> K e. ( X H Y ) ) |
|
| 12 | curf2.l | |- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
|
| 13 | curf2.n | |- N = ( D Nat E ) |
|
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 | curf2 | |- ( ph -> L = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
| 15 | eqid | |- ( C Xc. D ) = ( C Xc. D ) |
|
| 16 | 15 2 6 | xpcbas | |- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 17 | eqid | |- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
|
| 18 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 19 | relfunc | |- Rel ( ( C Xc. D ) Func E ) |
|
| 20 | 1st2ndbr | |- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
|
| 21 | 19 5 20 | sylancr | |- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 22 | 21 | adantr | |- ( ( ph /\ z e. B ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 23 | opelxpi | |- ( ( X e. A /\ z e. B ) -> <. X , z >. e. ( A X. B ) ) |
|
| 24 | 9 23 | sylan | |- ( ( ph /\ z e. B ) -> <. X , z >. e. ( A X. B ) ) |
| 25 | opelxpi | |- ( ( Y e. A /\ z e. B ) -> <. Y , z >. e. ( A X. B ) ) |
|
| 26 | 10 25 | sylan | |- ( ( ph /\ z e. B ) -> <. Y , z >. e. ( A X. B ) ) |
| 27 | 16 17 18 22 24 26 | funcf2 | |- ( ( ph /\ z e. B ) -> ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
| 28 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 29 | 9 | adantr | |- ( ( ph /\ z e. B ) -> X e. A ) |
| 30 | simpr | |- ( ( ph /\ z e. B ) -> z e. B ) |
|
| 31 | 10 | adantr | |- ( ( ph /\ z e. B ) -> Y e. A ) |
| 32 | 15 2 6 7 28 29 30 31 30 17 | xpchom2 | |- ( ( ph /\ z e. B ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) = ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) ) |
| 33 | 32 | feq2d | |- ( ( ph /\ z e. B ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) <-> ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) ) |
| 34 | 27 33 | mpbid | |- ( ( ph /\ z e. B ) -> ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
| 35 | 11 | adantr | |- ( ( ph /\ z e. B ) -> K e. ( X H Y ) ) |
| 36 | 4 | adantr | |- ( ( ph /\ z e. B ) -> D e. Cat ) |
| 37 | 6 28 8 36 30 | catidcl | |- ( ( ph /\ z e. B ) -> ( I ` z ) e. ( z ( Hom ` D ) z ) ) |
| 38 | 34 35 37 | fovcdmd | |- ( ( ph /\ z e. B ) -> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
| 39 | 3 | adantr | |- ( ( ph /\ z e. B ) -> C e. Cat ) |
| 40 | 5 | adantr | |- ( ( ph /\ z e. B ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 41 | eqid | |- ( ( 1st ` G ) ` X ) = ( ( 1st ` G ) ` X ) |
|
| 42 | 1 2 39 36 40 6 29 41 30 | curf11 | |- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( X ( 1st ` F ) z ) ) |
| 43 | df-ov | |- ( X ( 1st ` F ) z ) = ( ( 1st ` F ) ` <. X , z >. ) |
|
| 44 | 42 43 | eqtrdi | |- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( ( 1st ` F ) ` <. X , z >. ) ) |
| 45 | eqid | |- ( ( 1st ` G ) ` Y ) = ( ( 1st ` G ) ` Y ) |
|
| 46 | 1 2 39 36 40 6 31 45 30 | curf11 | |- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( Y ( 1st ` F ) z ) ) |
| 47 | df-ov | |- ( Y ( 1st ` F ) z ) = ( ( 1st ` F ) ` <. Y , z >. ) |
|
| 48 | 46 47 | eqtrdi | |- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( ( 1st ` F ) ` <. Y , z >. ) ) |
| 49 | 44 48 | oveq12d | |- ( ( ph /\ z e. B ) -> ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) = ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
| 50 | 38 49 | eleqtrrd | |- ( ( ph /\ z e. B ) -> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
| 51 | 50 | ralrimiva | |- ( ph -> A. z e. B ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
| 52 | 6 | fvexi | |- B e. _V |
| 53 | mptelixpg | |- ( B e. _V -> ( ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) <-> A. z e. B ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) ) |
|
| 54 | 52 53 | ax-mp | |- ( ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) <-> A. z e. B ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
| 55 | 51 54 | sylibr | |- ( ph -> ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
| 56 | 14 55 | eqeltrd | |- ( ph -> L e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
| 57 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 58 | 3 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> C e. Cat ) |
| 59 | 9 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> X e. A ) |
| 60 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 61 | 10 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> Y e. A ) |
| 62 | 11 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> K e. ( X H Y ) ) |
| 63 | 2 7 57 58 59 60 61 62 | catrid | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = K ) |
| 64 | 2 7 57 58 59 60 61 62 | catlid | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) = K ) |
| 65 | 63 64 | eqtr4d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) ) |
| 66 | 4 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> D e. Cat ) |
| 67 | simpr1 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> z e. B ) |
|
| 68 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 69 | simpr2 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> w e. B ) |
|
| 70 | simpr3 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> f e. ( z ( Hom ` D ) w ) ) |
|
| 71 | 6 28 8 66 67 68 69 70 | catlid | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) = f ) |
| 72 | 6 28 8 66 67 68 69 70 | catrid | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) = f ) |
| 73 | 71 72 | eqtr4d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) = ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) ) |
| 74 | 65 73 | opeq12d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) , ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) >. = <. ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) , ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) >. ) |
| 75 | eqid | |- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
|
| 76 | 2 7 57 58 59 | catidcl | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
| 77 | 6 28 8 66 69 | catidcl | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( I ` w ) e. ( w ( Hom ` D ) w ) ) |
| 78 | 15 2 6 7 28 59 67 59 69 60 68 75 61 69 76 70 62 77 | xpcco2 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) = <. ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) , ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) >. ) |
| 79 | 37 | 3ad2antr1 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( I ` z ) e. ( z ( Hom ` D ) z ) ) |
| 80 | 2 7 57 58 61 | catidcl | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` Y ) e. ( Y H Y ) ) |
| 81 | 15 2 6 7 28 59 67 61 67 60 68 75 61 69 62 79 80 70 | xpcco2 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) = <. ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) , ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) >. ) |
| 82 | 74 78 81 | 3eqtr4d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) = ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) ) |
| 83 | 82 | fveq2d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) ) = ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) ) ) |
| 84 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 85 | 21 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 86 | 24 | 3ad2antr1 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. X , z >. e. ( A X. B ) ) |
| 87 | 59 69 | opelxpd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. X , w >. e. ( A X. B ) ) |
| 88 | 61 69 | opelxpd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. Y , w >. e. ( A X. B ) ) |
| 89 | 76 70 | opelxpd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , f >. e. ( ( X H X ) X. ( z ( Hom ` D ) w ) ) ) |
| 90 | 15 2 6 7 28 59 67 59 69 17 | xpchom2 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) = ( ( X H X ) X. ( z ( Hom ` D ) w ) ) ) |
| 91 | 89 90 | eleqtrrd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , f >. e. ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) ) |
| 92 | 62 77 | opelxpd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` w ) >. e. ( ( X H Y ) X. ( w ( Hom ` D ) w ) ) ) |
| 93 | 15 2 6 7 28 59 69 61 69 17 | xpchom2 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , w >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) = ( ( X H Y ) X. ( w ( Hom ` D ) w ) ) ) |
| 94 | 92 93 | eleqtrrd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` w ) >. e. ( <. X , w >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) ) |
| 95 | 16 17 75 84 85 86 87 88 91 94 | funcco | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) ) = ( ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) ) |
| 96 | 26 | 3ad2antr1 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. Y , z >. e. ( A X. B ) ) |
| 97 | 62 79 | opelxpd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` z ) >. e. ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) ) |
| 98 | 15 2 6 7 28 59 67 61 67 17 | xpchom2 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) = ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) ) |
| 99 | 97 98 | eleqtrrd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` z ) >. e. ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) ) |
| 100 | 80 70 | opelxpd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` Y ) , f >. e. ( ( Y H Y ) X. ( z ( Hom ` D ) w ) ) ) |
| 101 | 15 2 6 7 28 61 67 61 69 17 | xpchom2 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. Y , z >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) = ( ( Y H Y ) X. ( z ( Hom ` D ) w ) ) ) |
| 102 | 100 101 | eleqtrrd | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` Y ) , f >. e. ( <. Y , z >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) ) |
| 103 | 16 17 75 84 85 86 96 88 99 102 | funcco | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) ) = ( ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) ) |
| 104 | 83 95 103 | 3eqtr3d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) = ( ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) ) |
| 105 | 5 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 106 | 1 2 58 66 105 6 59 41 67 | curf11 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( X ( 1st ` F ) z ) ) |
| 107 | 106 43 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( ( 1st ` F ) ` <. X , z >. ) ) |
| 108 | 1 2 58 66 105 6 59 41 69 | curf11 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) = ( X ( 1st ` F ) w ) ) |
| 109 | df-ov | |- ( X ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. X , w >. ) |
|
| 110 | 108 109 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) = ( ( 1st ` F ) ` <. X , w >. ) ) |
| 111 | 107 110 | opeq12d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. = <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ) |
| 112 | 1 2 58 66 105 6 61 45 69 | curf11 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) = ( Y ( 1st ` F ) w ) ) |
| 113 | df-ov | |- ( Y ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. Y , w >. ) |
|
| 114 | 112 113 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) = ( ( 1st ` F ) ` <. Y , w >. ) ) |
| 115 | 111 114 | oveq12d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ) |
| 116 | 1 2 58 66 105 6 7 8 59 61 62 12 69 | curf2val | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` w ) = ( K ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ( I ` w ) ) ) |
| 117 | df-ov | |- ( K ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ( I ` w ) ) = ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) |
|
| 118 | 116 117 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` w ) = ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ) |
| 119 | 1 2 58 66 105 6 59 41 67 28 57 69 70 | curf12 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) = ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) f ) ) |
| 120 | df-ov | |- ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) f ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) |
|
| 121 | 119 120 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) |
| 122 | 115 118 121 | oveq123d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) ) |
| 123 | 1 2 58 66 105 6 61 45 67 | curf11 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( Y ( 1st ` F ) z ) ) |
| 124 | 123 47 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( ( 1st ` F ) ` <. Y , z >. ) ) |
| 125 | 107 124 | opeq12d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. = <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ) |
| 126 | 125 114 | oveq12d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ) |
| 127 | 1 2 58 66 105 6 61 45 67 28 57 69 70 | curf12 | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) = ( ( ( Id ` C ) ` Y ) ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) f ) ) |
| 128 | df-ov | |- ( ( ( Id ` C ) ` Y ) ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) f ) = ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) |
|
| 129 | 127 128 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) = ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ) |
| 130 | 1 2 58 66 105 6 7 8 59 61 62 12 67 | curf2val | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` z ) = ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) |
| 131 | df-ov | |- ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) = ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) |
|
| 132 | 130 131 | eqtrdi | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` z ) = ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) |
| 133 | 126 129 132 | oveq123d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) = ( ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) ) |
| 134 | 104 122 133 | 3eqtr4d | |- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) ) |
| 135 | 134 | ralrimivvva | |- ( ph -> A. z e. B A. w e. B A. f e. ( z ( Hom ` D ) w ) ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) ) |
| 136 | 1 2 3 4 5 6 9 41 | curf1cl | |- ( ph -> ( ( 1st ` G ) ` X ) e. ( D Func E ) ) |
| 137 | 1 2 3 4 5 6 10 45 | curf1cl | |- ( ph -> ( ( 1st ` G ) ` Y ) e. ( D Func E ) ) |
| 138 | 13 6 28 18 84 136 137 | isnat2 | |- ( ph -> ( L e. ( ( ( 1st ` G ) ` X ) N ( ( 1st ` G ) ` Y ) ) <-> ( L e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) /\ A. z e. B A. w e. B A. f e. ( z ( Hom ` D ) w ) ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) ) ) ) |
| 139 | 56 135 138 | mpbir2and | |- ( ph -> L e. ( ( ( 1st ` G ) ` X ) N ( ( 1st ` G ) ` Y ) ) ) |