This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the composition of natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucco.q | |- Q = ( C FuncCat D ) |
|
| fucco.n | |- N = ( C Nat D ) |
||
| fucco.a | |- A = ( Base ` C ) |
||
| fucco.o | |- .x. = ( comp ` D ) |
||
| fucco.x | |- .xb = ( comp ` Q ) |
||
| fucco.f | |- ( ph -> R e. ( F N G ) ) |
||
| fucco.g | |- ( ph -> S e. ( G N H ) ) |
||
| Assertion | fucco | |- ( ph -> ( S ( <. F , G >. .xb H ) R ) = ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucco.q | |- Q = ( C FuncCat D ) |
|
| 2 | fucco.n | |- N = ( C Nat D ) |
|
| 3 | fucco.a | |- A = ( Base ` C ) |
|
| 4 | fucco.o | |- .x. = ( comp ` D ) |
|
| 5 | fucco.x | |- .xb = ( comp ` Q ) |
|
| 6 | fucco.f | |- ( ph -> R e. ( F N G ) ) |
|
| 7 | fucco.g | |- ( ph -> S e. ( G N H ) ) |
|
| 8 | eqid | |- ( C Func D ) = ( C Func D ) |
|
| 9 | 2 | natrcl | |- ( R e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 10 | 6 9 | syl | |- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 11 | 10 | simpld | |- ( ph -> F e. ( C Func D ) ) |
| 12 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 14 | 13 | simpld | |- ( ph -> C e. Cat ) |
| 15 | 13 | simprd | |- ( ph -> D e. Cat ) |
| 16 | 1 8 2 3 4 14 15 5 | fuccofval | |- ( ph -> .xb = ( v e. ( ( C Func D ) X. ( C Func D ) ) , h e. ( C Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
| 17 | fvexd | |- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` v ) e. _V ) |
|
| 18 | simprl | |- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> v = <. F , G >. ) |
|
| 19 | 18 | fveq2d | |- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` v ) = ( 1st ` <. F , G >. ) ) |
| 20 | op1stg | |- ( ( F e. ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` <. F , G >. ) = F ) |
|
| 21 | 10 20 | syl | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 22 | 21 | adantr | |- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` <. F , G >. ) = F ) |
| 23 | 19 22 | eqtrd | |- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> ( 1st ` v ) = F ) |
| 24 | fvexd | |- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` v ) e. _V ) |
|
| 25 | 18 | adantr | |- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> v = <. F , G >. ) |
| 26 | 25 | fveq2d | |- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` v ) = ( 2nd ` <. F , G >. ) ) |
| 27 | op2ndg | |- ( ( F e. ( C Func D ) /\ G e. ( C Func D ) ) -> ( 2nd ` <. F , G >. ) = G ) |
|
| 28 | 10 27 | syl | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 29 | 28 | ad2antrr | |- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` <. F , G >. ) = G ) |
| 30 | 26 29 | eqtrd | |- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> ( 2nd ` v ) = G ) |
| 31 | simpr | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> g = G ) |
|
| 32 | simprr | |- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> h = H ) |
|
| 33 | 32 | ad2antrr | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> h = H ) |
| 34 | 31 33 | oveq12d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( g N h ) = ( G N H ) ) |
| 35 | simplr | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> f = F ) |
|
| 36 | 35 31 | oveq12d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( f N g ) = ( F N G ) ) |
| 37 | 35 | fveq2d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 38 | 37 | fveq1d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` x ) ) |
| 39 | 31 | fveq2d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( 1st ` g ) = ( 1st ` G ) ) |
| 40 | 39 | fveq1d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( 1st ` g ) ` x ) = ( ( 1st ` G ) ` x ) ) |
| 41 | 38 40 | opeq12d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) |
| 42 | 33 | fveq2d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( 1st ` h ) = ( 1st ` H ) ) |
| 43 | 42 | fveq1d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( 1st ` h ) ` x ) = ( ( 1st ` H ) ` x ) ) |
| 44 | 41 43 | oveq12d | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) = ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ) |
| 45 | 44 | oveqd | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) = ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) |
| 46 | 45 | mpteq2dv | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) = ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) |
| 47 | 34 36 46 | mpoeq123dv | |- ( ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) /\ g = G ) -> ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
| 48 | 24 30 47 | csbied2 | |- ( ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) /\ f = F ) -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
| 49 | 17 23 48 | csbied2 | |- ( ( ph /\ ( v = <. F , G >. /\ h = H ) ) -> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g N h ) , a e. ( f N g ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. .x. ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
| 50 | opelxpi | |- ( ( F e. ( C Func D ) /\ G e. ( C Func D ) ) -> <. F , G >. e. ( ( C Func D ) X. ( C Func D ) ) ) |
|
| 51 | 10 50 | syl | |- ( ph -> <. F , G >. e. ( ( C Func D ) X. ( C Func D ) ) ) |
| 52 | 2 | natrcl | |- ( S e. ( G N H ) -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
| 53 | 7 52 | syl | |- ( ph -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
| 54 | 53 | simprd | |- ( ph -> H e. ( C Func D ) ) |
| 55 | ovex | |- ( G N H ) e. _V |
|
| 56 | ovex | |- ( F N G ) e. _V |
|
| 57 | 55 56 | mpoex | |- ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) e. _V |
| 58 | 57 | a1i | |- ( ph -> ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) e. _V ) |
| 59 | 16 49 51 54 58 | ovmpod | |- ( ph -> ( <. F , G >. .xb H ) = ( b e. ( G N H ) , a e. ( F N G ) |-> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) ) ) |
| 60 | simprl | |- ( ( ph /\ ( b = S /\ a = R ) ) -> b = S ) |
|
| 61 | 60 | fveq1d | |- ( ( ph /\ ( b = S /\ a = R ) ) -> ( b ` x ) = ( S ` x ) ) |
| 62 | simprr | |- ( ( ph /\ ( b = S /\ a = R ) ) -> a = R ) |
|
| 63 | 62 | fveq1d | |- ( ( ph /\ ( b = S /\ a = R ) ) -> ( a ` x ) = ( R ` x ) ) |
| 64 | 61 63 | oveq12d | |- ( ( ph /\ ( b = S /\ a = R ) ) -> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) = ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) |
| 65 | 64 | mpteq2dv | |- ( ( ph /\ ( b = S /\ a = R ) ) -> ( x e. A |-> ( ( b ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( a ` x ) ) ) = ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 66 | 3 | fvexi | |- A e. _V |
| 67 | 66 | mptex | |- ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. _V |
| 68 | 67 | a1i | |- ( ph -> ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. _V ) |
| 69 | 59 65 7 6 68 | ovmpod | |- ( ph -> ( S ( <. F , G >. .xb H ) R ) = ( x e. A |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |