This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpccat.t | |- T = ( C Xc. D ) |
|
| xpccat.c | |- ( ph -> C e. Cat ) |
||
| xpccat.d | |- ( ph -> D e. Cat ) |
||
| xpccat.x | |- X = ( Base ` C ) |
||
| xpccat.y | |- Y = ( Base ` D ) |
||
| xpccat.i | |- I = ( Id ` C ) |
||
| xpccat.j | |- J = ( Id ` D ) |
||
| xpcid.1 | |- .1. = ( Id ` T ) |
||
| xpcid.r | |- ( ph -> R e. X ) |
||
| xpcid.s | |- ( ph -> S e. Y ) |
||
| Assertion | xpcid | |- ( ph -> ( .1. ` <. R , S >. ) = <. ( I ` R ) , ( J ` S ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpccat.t | |- T = ( C Xc. D ) |
|
| 2 | xpccat.c | |- ( ph -> C e. Cat ) |
|
| 3 | xpccat.d | |- ( ph -> D e. Cat ) |
|
| 4 | xpccat.x | |- X = ( Base ` C ) |
|
| 5 | xpccat.y | |- Y = ( Base ` D ) |
|
| 6 | xpccat.i | |- I = ( Id ` C ) |
|
| 7 | xpccat.j | |- J = ( Id ` D ) |
|
| 8 | xpcid.1 | |- .1. = ( Id ` T ) |
|
| 9 | xpcid.r | |- ( ph -> R e. X ) |
|
| 10 | xpcid.s | |- ( ph -> S e. Y ) |
|
| 11 | df-ov | |- ( R .1. S ) = ( .1. ` <. R , S >. ) |
|
| 12 | 1 2 3 4 5 6 7 | xpccatid | |- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |
| 13 | 12 | simprd | |- ( ph -> ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) |
| 14 | 8 13 | eqtrid | |- ( ph -> .1. = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) |
| 15 | simprl | |- ( ( ph /\ ( x = R /\ y = S ) ) -> x = R ) |
|
| 16 | 15 | fveq2d | |- ( ( ph /\ ( x = R /\ y = S ) ) -> ( I ` x ) = ( I ` R ) ) |
| 17 | simprr | |- ( ( ph /\ ( x = R /\ y = S ) ) -> y = S ) |
|
| 18 | 17 | fveq2d | |- ( ( ph /\ ( x = R /\ y = S ) ) -> ( J ` y ) = ( J ` S ) ) |
| 19 | 16 18 | opeq12d | |- ( ( ph /\ ( x = R /\ y = S ) ) -> <. ( I ` x ) , ( J ` y ) >. = <. ( I ` R ) , ( J ` S ) >. ) |
| 20 | opex | |- <. ( I ` R ) , ( J ` S ) >. e. _V |
|
| 21 | 20 | a1i | |- ( ph -> <. ( I ` R ) , ( J ` S ) >. e. _V ) |
| 22 | 14 19 9 10 21 | ovmpod | |- ( ph -> ( R .1. S ) = <. ( I ` R ) , ( J ` S ) >. ) |
| 23 | 11 22 | eqtr3id | |- ( ph -> ( .1. ` <. R , S >. ) = <. ( I ` R ) , ( J ` S ) >. ) |