This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The objects of the functor category are functors from C to D . (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fucbas.q | |- Q = ( C FuncCat D ) |
|
| Assertion | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucbas.q | |- Q = ( C FuncCat D ) |
|
| 2 | eqid | |- ( C Func D ) = ( C Func D ) |
|
| 3 | eqid | |- ( C Nat D ) = ( C Nat D ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 6 | simpl | |- ( ( C e. Cat /\ D e. Cat ) -> C e. Cat ) |
|
| 7 | simpr | |- ( ( C e. Cat /\ D e. Cat ) -> D e. Cat ) |
|
| 8 | eqid | |- ( comp ` Q ) = ( comp ` Q ) |
|
| 9 | 1 2 3 4 5 6 7 8 | fuccofval | |- ( ( C e. Cat /\ D e. Cat ) -> ( comp ` Q ) = ( v e. ( ( C Func D ) X. ( C Func D ) ) , h e. ( C Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( C Nat D ) h ) , a e. ( f ( C Nat D ) g ) |-> ( x e. ( Base ` C ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
| 10 | 1 2 3 4 5 6 7 9 | fucval | |- ( ( C e. Cat /\ D e. Cat ) -> Q = { <. ( Base ` ndx ) , ( C Func D ) >. , <. ( Hom ` ndx ) , ( C Nat D ) >. , <. ( comp ` ndx ) , ( comp ` Q ) >. } ) |
| 11 | catstr | |- { <. ( Base ` ndx ) , ( C Func D ) >. , <. ( Hom ` ndx ) , ( C Nat D ) >. , <. ( comp ` ndx ) , ( comp ` Q ) >. } Struct <. 1 , ; 1 5 >. |
|
| 12 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 13 | snsstp1 | |- { <. ( Base ` ndx ) , ( C Func D ) >. } C_ { <. ( Base ` ndx ) , ( C Func D ) >. , <. ( Hom ` ndx ) , ( C Nat D ) >. , <. ( comp ` ndx ) , ( comp ` Q ) >. } |
|
| 14 | ovexd | |- ( ( C e. Cat /\ D e. Cat ) -> ( C Func D ) e. _V ) |
|
| 15 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
| 16 | 10 11 12 13 14 15 | strfv3 | |- ( ( C e. Cat /\ D e. Cat ) -> ( Base ` Q ) = ( C Func D ) ) |
| 17 | 16 | eqcomd | |- ( ( C e. Cat /\ D e. Cat ) -> ( C Func D ) = ( Base ` Q ) ) |
| 18 | base0 | |- (/) = ( Base ` (/) ) |
|
| 19 | funcrcl | |- ( f e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 20 | 19 | con3i | |- ( -. ( C e. Cat /\ D e. Cat ) -> -. f e. ( C Func D ) ) |
| 21 | 20 | eq0rdv | |- ( -. ( C e. Cat /\ D e. Cat ) -> ( C Func D ) = (/) ) |
| 22 | fnfuc | |- FuncCat Fn ( Cat X. Cat ) |
|
| 23 | 22 | fndmi | |- dom FuncCat = ( Cat X. Cat ) |
| 24 | 23 | ndmov | |- ( -. ( C e. Cat /\ D e. Cat ) -> ( C FuncCat D ) = (/) ) |
| 25 | 1 24 | eqtrid | |- ( -. ( C e. Cat /\ D e. Cat ) -> Q = (/) ) |
| 26 | 25 | fveq2d | |- ( -. ( C e. Cat /\ D e. Cat ) -> ( Base ` Q ) = ( Base ` (/) ) ) |
| 27 | 18 21 26 | 3eqtr4a | |- ( -. ( C e. Cat /\ D e. Cat ) -> ( C Func D ) = ( Base ` Q ) ) |
| 28 | 17 27 | pm2.61i | |- ( C Func D ) = ( Base ` Q ) |