This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmpt2d.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| fmpt2d.1 | |- ( ph -> F = ( x e. A |-> B ) ) |
||
| fmpt2d.3 | |- ( ( ph /\ y e. A ) -> ( F ` y ) e. C ) |
||
| Assertion | fmpt2d | |- ( ph -> F : A --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt2d.2 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | fmpt2d.1 | |- ( ph -> F = ( x e. A |-> B ) ) |
|
| 3 | fmpt2d.3 | |- ( ( ph /\ y e. A ) -> ( F ` y ) e. C ) |
|
| 4 | 1 | ralrimiva | |- ( ph -> A. x e. A B e. V ) |
| 5 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 6 | 5 | fnmpt | |- ( A. x e. A B e. V -> ( x e. A |-> B ) Fn A ) |
| 7 | 4 6 | syl | |- ( ph -> ( x e. A |-> B ) Fn A ) |
| 8 | 2 | fneq1d | |- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
| 9 | 7 8 | mpbird | |- ( ph -> F Fn A ) |
| 10 | 3 | ralrimiva | |- ( ph -> A. y e. A ( F ` y ) e. C ) |
| 11 | ffnfv | |- ( F : A --> C <-> ( F Fn A /\ A. y e. A ( F ` y ) e. C ) ) |
|
| 12 | 9 10 11 | sylanbrc | |- ( ph -> F : A --> C ) |