This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cidfn.b | |- B = ( Base ` C ) |
|
| cidfn.i | |- .1. = ( Id ` C ) |
||
| Assertion | cidfn | |- ( C e. Cat -> .1. Fn B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidfn.b | |- B = ( Base ` C ) |
|
| 2 | cidfn.i | |- .1. = ( Id ` C ) |
|
| 3 | riotaex | |- ( iota_ g e. ( x ( Hom ` C ) x ) A. y e. B ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) ) e. _V |
|
| 4 | eqid | |- ( x e. B |-> ( iota_ g e. ( x ( Hom ` C ) x ) A. y e. B ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) ) ) = ( x e. B |-> ( iota_ g e. ( x ( Hom ` C ) x ) A. y e. B ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) ) ) |
|
| 5 | 3 4 | fnmpti | |- ( x e. B |-> ( iota_ g e. ( x ( Hom ` C ) x ) A. y e. B ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) ) ) Fn B |
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 8 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 9 | 1 6 7 8 2 | cidfval | |- ( C e. Cat -> .1. = ( x e. B |-> ( iota_ g e. ( x ( Hom ` C ) x ) A. y e. B ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) ) ) ) |
| 10 | 9 | fneq1d | |- ( C e. Cat -> ( .1. Fn B <-> ( x e. B |-> ( iota_ g e. ( x ( Hom ` C ) x ) A. y e. B ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) ) ) Fn B ) ) |
| 11 | 5 10 | mpbiri | |- ( C e. Cat -> .1. Fn B ) |