This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in ApostolNT p. 17. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euclemma | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( P || ( M x. N ) <-> ( P || M \/ P || N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coprm | |- ( ( P e. Prime /\ M e. ZZ ) -> ( -. P || M <-> ( P gcd M ) = 1 ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( -. P || M <-> ( P gcd M ) = 1 ) ) |
| 3 | 2 | anbi2d | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ -. P || M ) <-> ( P || ( M x. N ) /\ ( P gcd M ) = 1 ) ) ) |
| 4 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 5 | coprmdvds | |- ( ( P e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ ( P gcd M ) = 1 ) -> P || N ) ) |
|
| 6 | 4 5 | syl3an1 | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ ( P gcd M ) = 1 ) -> P || N ) ) |
| 7 | 3 6 | sylbid | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || ( M x. N ) /\ -. P || M ) -> P || N ) ) |
| 8 | 7 | expd | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( P || ( M x. N ) -> ( -. P || M -> P || N ) ) ) |
| 9 | df-or | |- ( ( P || M \/ P || N ) <-> ( -. P || M -> P || N ) ) |
|
| 10 | 8 9 | imbitrrdi | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( P || ( M x. N ) -> ( P || M \/ P || N ) ) ) |
| 11 | ordvdsmul | |- ( ( P e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || M \/ P || N ) -> P || ( M x. N ) ) ) |
|
| 12 | 4 11 | syl3an1 | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || M \/ P || N ) -> P || ( M x. N ) ) ) |
| 13 | 10 12 | impbid | |- ( ( P e. Prime /\ M e. ZZ /\ N e. ZZ ) -> ( P || ( M x. N ) <-> ( P || M \/ P || N ) ) ) |