This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say A == B (mod N ), see also definition in ApostolNT p. 106. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moddvds | |- ( ( N e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod N ) = ( B mod N ) <-> N || ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 2 | 1 | adantr | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> N e. RR+ ) |
| 3 | 0mod | |- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
|
| 4 | 2 3 | syl | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( 0 mod N ) = 0 ) |
| 5 | 4 | eqeq2d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) <-> ( ( A - B ) mod N ) = 0 ) ) |
| 6 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 7 | 6 | ad2antrl | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> A e. RR ) |
| 8 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 9 | 8 | ad2antll | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> B e. RR ) |
| 10 | 9 | renegcld | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> -u B e. RR ) |
| 11 | modadd1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( -u B e. RR /\ N e. RR+ ) /\ ( A mod N ) = ( B mod N ) ) -> ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) ) |
|
| 12 | 11 | 3expia | |- ( ( ( A e. RR /\ B e. RR ) /\ ( -u B e. RR /\ N e. RR+ ) ) -> ( ( A mod N ) = ( B mod N ) -> ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) ) ) |
| 13 | 7 9 10 2 12 | syl22anc | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) -> ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) ) ) |
| 14 | 7 | recnd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> A e. CC ) |
| 15 | 9 | recnd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> B e. CC ) |
| 16 | 14 15 | negsubd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( A + -u B ) = ( A - B ) ) |
| 17 | 16 | oveq1d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A + -u B ) mod N ) = ( ( A - B ) mod N ) ) |
| 18 | 15 | negidd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( B + -u B ) = 0 ) |
| 19 | 18 | oveq1d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( B + -u B ) mod N ) = ( 0 mod N ) ) |
| 20 | 17 19 | eqeq12d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) <-> ( ( A - B ) mod N ) = ( 0 mod N ) ) ) |
| 21 | 13 20 | sylibd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) -> ( ( A - B ) mod N ) = ( 0 mod N ) ) ) |
| 22 | 7 9 | resubcld | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( A - B ) e. RR ) |
| 23 | 0red | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> 0 e. RR ) |
|
| 24 | modadd1 | |- ( ( ( ( A - B ) e. RR /\ 0 e. RR ) /\ ( B e. RR /\ N e. RR+ ) /\ ( ( A - B ) mod N ) = ( 0 mod N ) ) -> ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) ) |
|
| 25 | 24 | 3expia | |- ( ( ( ( A - B ) e. RR /\ 0 e. RR ) /\ ( B e. RR /\ N e. RR+ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) -> ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) ) ) |
| 26 | 22 23 9 2 25 | syl22anc | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) -> ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) ) ) |
| 27 | 14 15 | npcand | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A - B ) + B ) = A ) |
| 28 | 27 | oveq1d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) + B ) mod N ) = ( A mod N ) ) |
| 29 | 15 | addlidd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( 0 + B ) = B ) |
| 30 | 29 | oveq1d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( 0 + B ) mod N ) = ( B mod N ) ) |
| 31 | 28 30 | eqeq12d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |
| 32 | 26 31 | sylibd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) -> ( A mod N ) = ( B mod N ) ) ) |
| 33 | 21 32 | impbid | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) <-> ( ( A - B ) mod N ) = ( 0 mod N ) ) ) |
| 34 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 35 | dvdsval3 | |- ( ( N e. NN /\ ( A - B ) e. ZZ ) -> ( N || ( A - B ) <-> ( ( A - B ) mod N ) = 0 ) ) |
|
| 36 | 34 35 | sylan2 | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( N || ( A - B ) <-> ( ( A - B ) mod N ) = 0 ) ) |
| 37 | 5 33 36 | 3bitr4d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) <-> N || ( A - B ) ) ) |
| 38 | 37 | 3impb | |- ( ( N e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod N ) = ( B mod N ) <-> N || ( A - B ) ) ) |