This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013) (Revised by Mario Carneiro, 22-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdom | |- ( ( A e. Fin /\ B e. V ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | |- ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) e. Fin |
|
| 2 | ficardom | |- ( ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) e. Fin -> ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) e. _om ) |
|
| 3 | 1 2 | ax-mp | |- ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) e. _om |
| 4 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 5 | 4 | hashgval | |- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
| 6 | 5 | ad2antrr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
| 7 | 4 | hashgval | |- ( ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) = ( # ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) |
| 8 | 1 7 | ax-mp | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) = ( # ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) |
| 9 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( # ` A ) e. NN0 ) |
| 11 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( # ` B ) e. NN0 ) |
| 13 | simpr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( # ` A ) <_ ( # ` B ) ) |
|
| 14 | nn0sub2 | |- ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( # ` B ) - ( # ` A ) ) e. NN0 ) |
|
| 15 | 10 12 13 14 | syl3anc | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( # ` B ) - ( # ` A ) ) e. NN0 ) |
| 16 | hashfz1 | |- ( ( ( # ` B ) - ( # ` A ) ) e. NN0 -> ( # ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) = ( ( # ` B ) - ( # ` A ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( # ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) = ( ( # ` B ) - ( # ` A ) ) ) |
| 18 | 8 17 | eqtrid | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) = ( ( # ` B ) - ( # ` A ) ) ) |
| 19 | 6 18 | oveq12d | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) = ( ( # ` A ) + ( ( # ` B ) - ( # ` A ) ) ) ) |
| 20 | 9 | nn0cnd | |- ( A e. Fin -> ( # ` A ) e. CC ) |
| 21 | 11 | nn0cnd | |- ( B e. Fin -> ( # ` B ) e. CC ) |
| 22 | pncan3 | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( # ` A ) + ( ( # ` B ) - ( # ` A ) ) ) = ( # ` B ) ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) + ( ( # ` B ) - ( # ` A ) ) ) = ( # ` B ) ) |
| 24 | 23 | adantr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( # ` A ) + ( ( # ` B ) - ( # ` A ) ) ) = ( # ` B ) ) |
| 25 | 19 24 | eqtrd | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) = ( # ` B ) ) |
| 26 | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
|
| 27 | 26 | ad2antrr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( card ` A ) e. _om ) |
| 28 | 4 | hashgadd | |- ( ( ( card ` A ) e. _om /\ ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) e. _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) ) |
| 29 | 27 3 28 | sylancl | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) ) |
| 30 | 4 | hashgval | |- ( B e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) = ( # ` B ) ) |
| 31 | 30 | ad2antlr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) = ( # ` B ) ) |
| 32 | 25 29 31 | 3eqtr4d | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) |
| 33 | 32 | fveq2d | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) ) = ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) ) |
| 34 | 4 | hashgf1o | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 |
| 35 | nnacl | |- ( ( ( card ` A ) e. _om /\ ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) e. _om ) -> ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) e. _om ) |
|
| 36 | 27 3 35 | sylancl | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) e. _om ) |
| 37 | f1ocnvfv1 | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 /\ ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) e. _om ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) ) = ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) |
|
| 38 | 34 36 37 | sylancr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) ) = ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) |
| 39 | ficardom | |- ( B e. Fin -> ( card ` B ) e. _om ) |
|
| 40 | 39 | ad2antlr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( card ` B ) e. _om ) |
| 41 | f1ocnvfv1 | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 /\ ( card ` B ) e. _om ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) = ( card ` B ) ) |
|
| 42 | 34 40 41 | sylancr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) = ( card ` B ) ) |
| 43 | 33 38 42 | 3eqtr3d | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) = ( card ` B ) ) |
| 44 | oveq2 | |- ( y = ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) -> ( ( card ` A ) +o y ) = ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) ) |
|
| 45 | 44 | eqeq1d | |- ( y = ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) -> ( ( ( card ` A ) +o y ) = ( card ` B ) <-> ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) = ( card ` B ) ) ) |
| 46 | 45 | rspcev | |- ( ( ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) e. _om /\ ( ( card ` A ) +o ( card ` ( 1 ... ( ( # ` B ) - ( # ` A ) ) ) ) ) = ( card ` B ) ) -> E. y e. _om ( ( card ` A ) +o y ) = ( card ` B ) ) |
| 47 | 3 43 46 | sylancr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( # ` A ) <_ ( # ` B ) ) -> E. y e. _om ( ( card ` A ) +o y ) = ( card ` B ) ) |
| 48 | 47 | ex | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) -> E. y e. _om ( ( card ` A ) +o y ) = ( card ` B ) ) ) |
| 49 | cardnn | |- ( y e. _om -> ( card ` y ) = y ) |
|
| 50 | 49 | adantl | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. _om ) -> ( card ` y ) = y ) |
| 51 | 50 | oveq2d | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. _om ) -> ( ( card ` A ) +o ( card ` y ) ) = ( ( card ` A ) +o y ) ) |
| 52 | 51 | eqeq1d | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. _om ) -> ( ( ( card ` A ) +o ( card ` y ) ) = ( card ` B ) <-> ( ( card ` A ) +o y ) = ( card ` B ) ) ) |
| 53 | fveq2 | |- ( ( ( card ` A ) +o ( card ` y ) ) = ( card ` B ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) |
|
| 54 | nnfi | |- ( y e. _om -> y e. Fin ) |
|
| 55 | ficardom | |- ( y e. Fin -> ( card ` y ) e. _om ) |
|
| 56 | 4 | hashgadd | |- ( ( ( card ` A ) e. _om /\ ( card ` y ) e. _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) ) ) |
| 57 | 26 55 56 | syl2an | |- ( ( A e. Fin /\ y e. Fin ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) ) ) |
| 58 | 4 | hashgval | |- ( y e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) = ( # ` y ) ) |
| 59 | 5 58 | oveqan12d | |- ( ( A e. Fin /\ y e. Fin ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) ) = ( ( # ` A ) + ( # ` y ) ) ) |
| 60 | 57 59 | eqtrd | |- ( ( A e. Fin /\ y e. Fin ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( # ` A ) + ( # ` y ) ) ) |
| 61 | 60 | adantlr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. Fin ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( # ` A ) + ( # ` y ) ) ) |
| 62 | 30 | ad2antlr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. Fin ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) = ( # ` B ) ) |
| 63 | 61 62 | eqeq12d | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. Fin ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) <-> ( ( # ` A ) + ( # ` y ) ) = ( # ` B ) ) ) |
| 64 | hashcl | |- ( y e. Fin -> ( # ` y ) e. NN0 ) |
|
| 65 | 64 | nn0ge0d | |- ( y e. Fin -> 0 <_ ( # ` y ) ) |
| 66 | 65 | adantl | |- ( ( A e. Fin /\ y e. Fin ) -> 0 <_ ( # ` y ) ) |
| 67 | 9 | nn0red | |- ( A e. Fin -> ( # ` A ) e. RR ) |
| 68 | 64 | nn0red | |- ( y e. Fin -> ( # ` y ) e. RR ) |
| 69 | addge01 | |- ( ( ( # ` A ) e. RR /\ ( # ` y ) e. RR ) -> ( 0 <_ ( # ` y ) <-> ( # ` A ) <_ ( ( # ` A ) + ( # ` y ) ) ) ) |
|
| 70 | 67 68 69 | syl2an | |- ( ( A e. Fin /\ y e. Fin ) -> ( 0 <_ ( # ` y ) <-> ( # ` A ) <_ ( ( # ` A ) + ( # ` y ) ) ) ) |
| 71 | 66 70 | mpbid | |- ( ( A e. Fin /\ y e. Fin ) -> ( # ` A ) <_ ( ( # ` A ) + ( # ` y ) ) ) |
| 72 | 71 | adantlr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. Fin ) -> ( # ` A ) <_ ( ( # ` A ) + ( # ` y ) ) ) |
| 73 | breq2 | |- ( ( ( # ` A ) + ( # ` y ) ) = ( # ` B ) -> ( ( # ` A ) <_ ( ( # ` A ) + ( # ` y ) ) <-> ( # ` A ) <_ ( # ` B ) ) ) |
|
| 74 | 72 73 | syl5ibcom | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. Fin ) -> ( ( ( # ` A ) + ( # ` y ) ) = ( # ` B ) -> ( # ` A ) <_ ( # ` B ) ) ) |
| 75 | 63 74 | sylbid | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. Fin ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) -> ( # ` A ) <_ ( # ` B ) ) ) |
| 76 | 54 75 | sylan2 | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. _om ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` y ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) -> ( # ` A ) <_ ( # ` B ) ) ) |
| 77 | 53 76 | syl5 | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. _om ) -> ( ( ( card ` A ) +o ( card ` y ) ) = ( card ` B ) -> ( # ` A ) <_ ( # ` B ) ) ) |
| 78 | 52 77 | sylbird | |- ( ( ( A e. Fin /\ B e. Fin ) /\ y e. _om ) -> ( ( ( card ` A ) +o y ) = ( card ` B ) -> ( # ` A ) <_ ( # ` B ) ) ) |
| 79 | 78 | rexlimdva | |- ( ( A e. Fin /\ B e. Fin ) -> ( E. y e. _om ( ( card ` A ) +o y ) = ( card ` B ) -> ( # ` A ) <_ ( # ` B ) ) ) |
| 80 | 48 79 | impbid | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) <-> E. y e. _om ( ( card ` A ) +o y ) = ( card ` B ) ) ) |
| 81 | nnawordex | |- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) C_ ( card ` B ) <-> E. y e. _om ( ( card ` A ) +o y ) = ( card ` B ) ) ) |
|
| 82 | 26 39 81 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) C_ ( card ` B ) <-> E. y e. _om ( ( card ` A ) +o y ) = ( card ` B ) ) ) |
| 83 | finnum | |- ( A e. Fin -> A e. dom card ) |
|
| 84 | finnum | |- ( B e. Fin -> B e. dom card ) |
|
| 85 | carddom2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |
|
| 86 | 83 84 85 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |
| 87 | 80 82 86 | 3bitr2d | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
| 88 | 87 | adantlr | |- ( ( ( A e. Fin /\ B e. V ) /\ B e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
| 89 | hashxrcl | |- ( A e. Fin -> ( # ` A ) e. RR* ) |
|
| 90 | 89 | ad2antrr | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( # ` A ) e. RR* ) |
| 91 | pnfge | |- ( ( # ` A ) e. RR* -> ( # ` A ) <_ +oo ) |
|
| 92 | 90 91 | syl | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( # ` A ) <_ +oo ) |
| 93 | hashinf | |- ( ( B e. V /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
|
| 94 | 93 | adantll | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
| 95 | 92 94 | breqtrrd | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( # ` A ) <_ ( # ` B ) ) |
| 96 | isinffi | |- ( ( -. B e. Fin /\ A e. Fin ) -> E. f f : A -1-1-> B ) |
|
| 97 | 96 | ancoms | |- ( ( A e. Fin /\ -. B e. Fin ) -> E. f f : A -1-1-> B ) |
| 98 | 97 | adantlr | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> E. f f : A -1-1-> B ) |
| 99 | brdomg | |- ( B e. V -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
|
| 100 | 99 | ad2antlr | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
| 101 | 98 100 | mpbird | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> A ~<_ B ) |
| 102 | 95 101 | 2thd | |- ( ( ( A e. Fin /\ B e. V ) /\ -. B e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
| 103 | 88 102 | pm2.61dan | |- ( ( A e. Fin /\ B e. V ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |