This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz01en | |- ( N e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( 1 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 2 | 0z | |- 0 e. ZZ |
|
| 3 | 1z | |- 1 e. ZZ |
|
| 4 | fzen | |- ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ /\ 1 e. ZZ ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
|
| 5 | 2 3 4 | mp3an13 | |- ( ( N - 1 ) e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
| 6 | 1 5 | syl | |- ( N e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
| 7 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 8 | 7 | a1i | |- ( N e. ZZ -> ( 0 + 1 ) = 1 ) |
| 9 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 10 | ax-1cn | |- 1 e. CC |
|
| 11 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 12 | 9 10 11 | sylancl | |- ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) |
| 13 | 8 12 | oveq12d | |- ( N e. ZZ -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
| 14 | 6 13 | breqtrd | |- ( N e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( 1 ... N ) ) |