This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer mod B lies in the first B nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodfz | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. ( 0 ... ( B - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmodcl | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. NN0 ) |
|
| 2 | 1 | nn0zd | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. ZZ ) |
| 3 | 1 | nn0ge0d | |- ( ( A e. ZZ /\ B e. NN ) -> 0 <_ ( A mod B ) ) |
| 4 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 5 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 6 | modlt | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) < B ) |
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 10 | 9 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. ZZ ) |
| 11 | elfzm11 | |- ( ( 0 e. ZZ /\ B e. ZZ ) -> ( ( A mod B ) e. ( 0 ... ( B - 1 ) ) <-> ( ( A mod B ) e. ZZ /\ 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) ) |
|
| 12 | 8 10 11 | sylancr | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A mod B ) e. ( 0 ... ( B - 1 ) ) <-> ( ( A mod B ) e. ZZ /\ 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) ) |
| 13 | 2 3 7 12 | mpbir3and | |- ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. ( 0 ... ( B - 1 ) ) ) |