This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnz | |- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 2 | orc | |- ( N e. NN -> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
|
| 3 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 4 | 1 2 3 | jca31 | |- ( N e. NN -> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
| 5 | idd | |- ( ( N e. RR /\ 0 < N ) -> ( N e. NN -> N e. NN ) ) |
|
| 6 | lt0neg2 | |- ( N e. RR -> ( 0 < N <-> -u N < 0 ) ) |
|
| 7 | renegcl | |- ( N e. RR -> -u N e. RR ) |
|
| 8 | 0re | |- 0 e. RR |
|
| 9 | ltnsym | |- ( ( -u N e. RR /\ 0 e. RR ) -> ( -u N < 0 -> -. 0 < -u N ) ) |
|
| 10 | 7 8 9 | sylancl | |- ( N e. RR -> ( -u N < 0 -> -. 0 < -u N ) ) |
| 11 | 6 10 | sylbid | |- ( N e. RR -> ( 0 < N -> -. 0 < -u N ) ) |
| 12 | 11 | imp | |- ( ( N e. RR /\ 0 < N ) -> -. 0 < -u N ) |
| 13 | nngt0 | |- ( -u N e. NN -> 0 < -u N ) |
|
| 14 | 12 13 | nsyl | |- ( ( N e. RR /\ 0 < N ) -> -. -u N e. NN ) |
| 15 | gt0ne0 | |- ( ( N e. RR /\ 0 < N ) -> N =/= 0 ) |
|
| 16 | 15 | neneqd | |- ( ( N e. RR /\ 0 < N ) -> -. N = 0 ) |
| 17 | ioran | |- ( -. ( -u N e. NN \/ N = 0 ) <-> ( -. -u N e. NN /\ -. N = 0 ) ) |
|
| 18 | 14 16 17 | sylanbrc | |- ( ( N e. RR /\ 0 < N ) -> -. ( -u N e. NN \/ N = 0 ) ) |
| 19 | 18 | pm2.21d | |- ( ( N e. RR /\ 0 < N ) -> ( ( -u N e. NN \/ N = 0 ) -> N e. NN ) ) |
| 20 | 5 19 | jaod | |- ( ( N e. RR /\ 0 < N ) -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> N e. NN ) ) |
| 21 | 20 | ex | |- ( N e. RR -> ( 0 < N -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> N e. NN ) ) ) |
| 22 | 21 | com23 | |- ( N e. RR -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> ( 0 < N -> N e. NN ) ) ) |
| 23 | 22 | imp31 | |- ( ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) -> N e. NN ) |
| 24 | 4 23 | impbii | |- ( N e. NN <-> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
| 25 | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
|
| 26 | 3orrot | |- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ -u N e. NN \/ N = 0 ) ) |
|
| 27 | 3orass | |- ( ( N e. NN \/ -u N e. NN \/ N = 0 ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
|
| 28 | 26 27 | bitri | |- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
| 29 | 28 | anbi2i | |- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
| 30 | 25 29 | bitri | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
| 31 | 30 | anbi1i | |- ( ( N e. ZZ /\ 0 < N ) <-> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
| 32 | 24 31 | bitr4i | |- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |