This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominates its subsets. Theorem 16 of Suppes p. 94. (Contributed by NM, 19-Jun-1998) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdomg | |- ( B e. V -> ( A C_ B -> A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | |- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
|
| 2 | simpr | |- ( ( A C_ B /\ B e. V ) -> B e. V ) |
|
| 3 | f1oi | |- ( _I |` A ) : A -1-1-onto-> A |
|
| 4 | dff1o3 | |- ( ( _I |` A ) : A -1-1-onto-> A <-> ( ( _I |` A ) : A -onto-> A /\ Fun `' ( _I |` A ) ) ) |
|
| 5 | 3 4 | mpbi | |- ( ( _I |` A ) : A -onto-> A /\ Fun `' ( _I |` A ) ) |
| 6 | 5 | simpli | |- ( _I |` A ) : A -onto-> A |
| 7 | fof | |- ( ( _I |` A ) : A -onto-> A -> ( _I |` A ) : A --> A ) |
|
| 8 | 6 7 | ax-mp | |- ( _I |` A ) : A --> A |
| 9 | fss | |- ( ( ( _I |` A ) : A --> A /\ A C_ B ) -> ( _I |` A ) : A --> B ) |
|
| 10 | 8 9 | mpan | |- ( A C_ B -> ( _I |` A ) : A --> B ) |
| 11 | funi | |- Fun _I |
|
| 12 | cnvi | |- `' _I = _I |
|
| 13 | 12 | funeqi | |- ( Fun `' _I <-> Fun _I ) |
| 14 | 11 13 | mpbir | |- Fun `' _I |
| 15 | funres11 | |- ( Fun `' _I -> Fun `' ( _I |` A ) ) |
|
| 16 | 14 15 | ax-mp | |- Fun `' ( _I |` A ) |
| 17 | df-f1 | |- ( ( _I |` A ) : A -1-1-> B <-> ( ( _I |` A ) : A --> B /\ Fun `' ( _I |` A ) ) ) |
|
| 18 | 10 16 17 | sylanblrc | |- ( A C_ B -> ( _I |` A ) : A -1-1-> B ) |
| 19 | 18 | adantr | |- ( ( A C_ B /\ B e. V ) -> ( _I |` A ) : A -1-1-> B ) |
| 20 | f1dom2g | |- ( ( A e. _V /\ B e. V /\ ( _I |` A ) : A -1-1-> B ) -> A ~<_ B ) |
|
| 21 | 1 2 19 20 | syl3anc | |- ( ( A C_ B /\ B e. V ) -> A ~<_ B ) |
| 22 | 21 | expcom | |- ( B e. V -> ( A C_ B -> A ~<_ B ) ) |