This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . For any odd prime P , there is a k < P such that k P - 1 is a sum of two squares. (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sqlem11.5 | |- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
||
| 4sqlem11.6 | |- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
||
| Assertion | 4sqlem12 | |- ( ph -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sqlem11.5 | |- A = { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } |
|
| 6 | 4sqlem11.6 | |- F = ( v e. A |-> ( ( P - 1 ) - v ) ) |
|
| 7 | 1 2 3 4 5 6 | 4sqlem11 | |- ( ph -> ( A i^i ran F ) =/= (/) ) |
| 8 | n0 | |- ( ( A i^i ran F ) =/= (/) <-> E. j j e. ( A i^i ran F ) ) |
|
| 9 | 7 8 | sylib | |- ( ph -> E. j j e. ( A i^i ran F ) ) |
| 10 | vex | |- j e. _V |
|
| 11 | eqeq1 | |- ( u = j -> ( u = ( ( m ^ 2 ) mod P ) <-> j = ( ( m ^ 2 ) mod P ) ) ) |
|
| 12 | 11 | rexbidv | |- ( u = j -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) ) ) |
| 13 | 10 12 5 | elab2 | |- ( j e. A <-> E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) ) |
| 14 | abid | |- ( j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } <-> E. v e. A j = ( ( P - 1 ) - v ) ) |
|
| 15 | 5 | rexeqi | |- ( E. v e. A j = ( ( P - 1 ) - v ) <-> E. v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } j = ( ( P - 1 ) - v ) ) |
| 16 | oveq1 | |- ( m = n -> ( m ^ 2 ) = ( n ^ 2 ) ) |
|
| 17 | 16 | oveq1d | |- ( m = n -> ( ( m ^ 2 ) mod P ) = ( ( n ^ 2 ) mod P ) ) |
| 18 | 17 | eqeq2d | |- ( m = n -> ( u = ( ( m ^ 2 ) mod P ) <-> u = ( ( n ^ 2 ) mod P ) ) ) |
| 19 | 18 | cbvrexvw | |- ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) u = ( ( n ^ 2 ) mod P ) ) |
| 20 | eqeq1 | |- ( u = v -> ( u = ( ( n ^ 2 ) mod P ) <-> v = ( ( n ^ 2 ) mod P ) ) ) |
|
| 21 | 20 | rexbidv | |- ( u = v -> ( E. n e. ( 0 ... N ) u = ( ( n ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) ) ) |
| 22 | 19 21 | bitrid | |- ( u = v -> ( E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) <-> E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) ) ) |
| 23 | 22 | rexab | |- ( E. v e. { u | E. m e. ( 0 ... N ) u = ( ( m ^ 2 ) mod P ) } j = ( ( P - 1 ) - v ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 24 | 14 15 23 | 3bitri | |- ( j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 25 | 6 | rnmpt | |- ran F = { j | E. v e. A j = ( ( P - 1 ) - v ) } |
| 26 | 25 | eleq2i | |- ( j e. ran F <-> j e. { j | E. v e. A j = ( ( P - 1 ) - v ) } ) |
| 27 | rexcom4 | |- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
|
| 28 | r19.41v | |- ( E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
|
| 29 | 28 | exbii | |- ( E. v E. n e. ( 0 ... N ) ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 30 | 27 29 | bitri | |- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. v ( E. n e. ( 0 ... N ) v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 31 | 24 26 30 | 3bitr4i | |- ( j e. ran F <-> E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) ) |
| 32 | ovex | |- ( ( n ^ 2 ) mod P ) e. _V |
|
| 33 | oveq2 | |- ( v = ( ( n ^ 2 ) mod P ) -> ( ( P - 1 ) - v ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
|
| 34 | 33 | eqeq2d | |- ( v = ( ( n ^ 2 ) mod P ) -> ( j = ( ( P - 1 ) - v ) <-> j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 35 | 32 34 | ceqsexv | |- ( E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 36 | 35 | rexbii | |- ( E. n e. ( 0 ... N ) E. v ( v = ( ( n ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - v ) ) <-> E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 37 | 31 36 | bitri | |- ( j e. ran F <-> E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 38 | 13 37 | anbi12i | |- ( ( j e. A /\ j e. ran F ) <-> ( E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) /\ E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 39 | elin | |- ( j e. ( A i^i ran F ) <-> ( j e. A /\ j e. ran F ) ) |
|
| 40 | reeanv | |- ( E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) <-> ( E. m e. ( 0 ... N ) j = ( ( m ^ 2 ) mod P ) /\ E. n e. ( 0 ... N ) j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
|
| 41 | 38 39 40 | 3bitr4i | |- ( j e. ( A i^i ran F ) <-> E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 42 | eqtr2 | |- ( ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
|
| 43 | 4 | 3ad2ant1 | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. Prime ) |
| 44 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 45 | 43 44 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. NN ) |
| 46 | nnm1nn0 | |- ( P e. NN -> ( P - 1 ) e. NN0 ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. NN0 ) |
| 48 | 47 | nn0red | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. RR ) |
| 49 | 45 | nnrpd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. RR+ ) |
| 50 | 47 | nn0ge0d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ ( P - 1 ) ) |
| 51 | 45 | nnred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. RR ) |
| 52 | 51 | ltm1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) < P ) |
| 53 | modid | |- ( ( ( ( P - 1 ) e. RR /\ P e. RR+ ) /\ ( 0 <_ ( P - 1 ) /\ ( P - 1 ) < P ) ) -> ( ( P - 1 ) mod P ) = ( P - 1 ) ) |
|
| 54 | 48 49 50 52 53 | syl22anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( P - 1 ) mod P ) = ( P - 1 ) ) |
| 55 | 54 | oveq1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
| 56 | simp2r | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. ( 0 ... N ) ) |
|
| 57 | 56 | elfzelzd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. ZZ ) |
| 58 | zsqcl2 | |- ( n e. ZZ -> ( n ^ 2 ) e. NN0 ) |
|
| 59 | 57 58 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. NN0 ) |
| 60 | 59 | nn0red | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. RR ) |
| 61 | modlt | |- ( ( ( n ^ 2 ) e. RR /\ P e. RR+ ) -> ( ( n ^ 2 ) mod P ) < P ) |
|
| 62 | 60 49 61 | syl2anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) < P ) |
| 63 | zsqcl | |- ( n e. ZZ -> ( n ^ 2 ) e. ZZ ) |
|
| 64 | 57 63 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. ZZ ) |
| 65 | 64 45 | zmodcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) e. NN0 ) |
| 66 | 65 | nn0zd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) e. ZZ ) |
| 67 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 68 | 43 67 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. ZZ ) |
| 69 | zltlem1 | |- ( ( ( ( n ^ 2 ) mod P ) e. ZZ /\ P e. ZZ ) -> ( ( ( n ^ 2 ) mod P ) < P <-> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) ) |
|
| 70 | 66 68 69 | syl2anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( n ^ 2 ) mod P ) < P <-> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) ) |
| 71 | 62 70 | mpbid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) <_ ( P - 1 ) ) |
| 72 | 71 54 | breqtrrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) ) |
| 73 | modsubdir | |- ( ( ( P - 1 ) e. RR /\ ( n ^ 2 ) e. RR /\ P e. RR+ ) -> ( ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) <-> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) ) |
|
| 74 | 48 60 49 73 | syl3anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( n ^ 2 ) mod P ) <_ ( ( P - 1 ) mod P ) <-> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) ) |
| 75 | 72 74 | mpbid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) = ( ( ( P - 1 ) mod P ) - ( ( n ^ 2 ) mod P ) ) ) |
| 76 | simp3 | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) |
|
| 77 | 55 75 76 | 3eqtr4rd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) ) |
| 78 | simp2l | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. ( 0 ... N ) ) |
|
| 79 | 78 | elfzelzd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. ZZ ) |
| 80 | zsqcl | |- ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) |
|
| 81 | 79 80 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. ZZ ) |
| 82 | 47 | nn0zd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. ZZ ) |
| 83 | 82 64 | zsubcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( P - 1 ) - ( n ^ 2 ) ) e. ZZ ) |
| 84 | moddvds | |- ( ( P e. NN /\ ( m ^ 2 ) e. ZZ /\ ( ( P - 1 ) - ( n ^ 2 ) ) e. ZZ ) -> ( ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) <-> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) ) |
|
| 85 | 45 81 83 84 | syl3anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( ( P - 1 ) - ( n ^ 2 ) ) mod P ) <-> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) ) |
| 86 | 77 85 | mpbid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) ) |
| 87 | zsqcl2 | |- ( m e. ZZ -> ( m ^ 2 ) e. NN0 ) |
|
| 88 | 79 87 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. NN0 ) |
| 89 | 88 | nn0cnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. CC ) |
| 90 | 47 | nn0cnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P - 1 ) e. CC ) |
| 91 | 59 | nn0cnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) e. CC ) |
| 92 | 89 90 91 | subsub3d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) - ( P - 1 ) ) ) |
| 93 | 88 59 | nn0addcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. NN0 ) |
| 94 | 93 | nn0cnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. CC ) |
| 95 | 45 | nncnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P e. CC ) |
| 96 | 1cnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 e. CC ) |
|
| 97 | 94 95 96 | subsub3d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) - ( P - 1 ) ) = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
| 98 | 92 97 | eqtrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) - ( ( P - 1 ) - ( n ^ 2 ) ) ) = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
| 99 | 86 98 | breqtrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) |
| 100 | nn0p1nn | |- ( ( ( m ^ 2 ) + ( n ^ 2 ) ) e. NN0 -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN ) |
|
| 101 | 93 100 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN ) |
| 102 | 101 | nnzd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) |
| 103 | dvdssubr | |- ( ( P e. ZZ /\ ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) ) |
|
| 104 | 68 102 103 | syl2anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> P || ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) - P ) ) ) |
| 105 | 99 104 | mpbird | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
| 106 | 45 | nnne0d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P =/= 0 ) |
| 107 | dvdsval2 | |- ( ( P e. ZZ /\ P =/= 0 /\ ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. ZZ ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) ) |
|
| 108 | 68 106 102 107 | syl3anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P || ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) <-> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) ) |
| 109 | 105 108 | mpbid | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ ) |
| 110 | nnrp | |- ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR+ ) |
|
| 111 | nnrp | |- ( P e. NN -> P e. RR+ ) |
|
| 112 | rpdivcl | |- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR+ /\ P e. RR+ ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
|
| 113 | 110 111 112 | syl2an | |- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. NN /\ P e. NN ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
| 114 | 101 45 113 | syl2anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. RR+ ) |
| 115 | 114 | rpgt0d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) |
| 116 | elnnz | |- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. NN <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 0 < ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) ) |
|
| 117 | 109 115 116 | sylanbrc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. NN ) |
| 118 | 117 | nnge1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) ) |
| 119 | 93 | nn0red | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) e. RR ) |
| 120 | 2nn | |- 2 e. NN |
|
| 121 | 2 | 3ad2ant1 | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. NN ) |
| 122 | nnmulcl | |- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
|
| 123 | 120 121 122 | sylancr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. NN ) |
| 124 | 123 | nnred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. RR ) |
| 125 | 124 | resqcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) e. RR ) |
| 126 | nnmulcl | |- ( ( 2 e. NN /\ ( 2 x. N ) e. NN ) -> ( 2 x. ( 2 x. N ) ) e. NN ) |
|
| 127 | 120 123 126 | sylancr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. NN ) |
| 128 | 127 | nnred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. RR ) |
| 129 | 125 128 | readdcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) e. RR ) |
| 130 | 1red | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 1 e. RR ) |
|
| 131 | 121 | nnsqcld | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. NN ) |
| 132 | nnmulcl | |- ( ( 2 e. NN /\ ( N ^ 2 ) e. NN ) -> ( 2 x. ( N ^ 2 ) ) e. NN ) |
|
| 133 | 120 131 132 | sylancr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) e. NN ) |
| 134 | 133 | nnred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) e. RR ) |
| 135 | 88 | nn0red | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) e. RR ) |
| 136 | 131 | nnred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. RR ) |
| 137 | 79 | zred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m e. RR ) |
| 138 | elfzle1 | |- ( m e. ( 0 ... N ) -> 0 <_ m ) |
|
| 139 | 78 138 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ m ) |
| 140 | 121 | nnred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. RR ) |
| 141 | elfzle2 | |- ( m e. ( 0 ... N ) -> m <_ N ) |
|
| 142 | 78 141 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> m <_ N ) |
| 143 | le2sq2 | |- ( ( ( m e. RR /\ 0 <_ m ) /\ ( N e. RR /\ m <_ N ) ) -> ( m ^ 2 ) <_ ( N ^ 2 ) ) |
|
| 144 | 137 139 140 142 143 | syl22anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m ^ 2 ) <_ ( N ^ 2 ) ) |
| 145 | 57 | zred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n e. RR ) |
| 146 | elfzle1 | |- ( n e. ( 0 ... N ) -> 0 <_ n ) |
|
| 147 | 56 146 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 <_ n ) |
| 148 | elfzle2 | |- ( n e. ( 0 ... N ) -> n <_ N ) |
|
| 149 | 56 148 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> n <_ N ) |
| 150 | le2sq2 | |- ( ( ( n e. RR /\ 0 <_ n ) /\ ( N e. RR /\ n <_ N ) ) -> ( n ^ 2 ) <_ ( N ^ 2 ) ) |
|
| 151 | 145 147 140 149 150 | syl22anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( n ^ 2 ) <_ ( N ^ 2 ) ) |
| 152 | 135 60 136 136 144 151 | le2addd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) <_ ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
| 153 | 131 | nncnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( N ^ 2 ) e. CC ) |
| 154 | 153 | 2timesd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) = ( ( N ^ 2 ) + ( N ^ 2 ) ) ) |
| 155 | 152 154 | breqtrrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) <_ ( 2 x. ( N ^ 2 ) ) ) |
| 156 | 2lt4 | |- 2 < 4 |
|
| 157 | 2re | |- 2 e. RR |
|
| 158 | 157 | a1i | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 2 e. RR ) |
| 159 | 4re | |- 4 e. RR |
|
| 160 | 159 | a1i | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 4 e. RR ) |
| 161 | 131 | nngt0d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < ( N ^ 2 ) ) |
| 162 | ltmul1 | |- ( ( 2 e. RR /\ 4 e. RR /\ ( ( N ^ 2 ) e. RR /\ 0 < ( N ^ 2 ) ) ) -> ( 2 < 4 <-> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) ) |
|
| 163 | 158 160 136 161 162 | syl112anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 < 4 <-> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) ) |
| 164 | 156 163 | mpbii | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) < ( 4 x. ( N ^ 2 ) ) ) |
| 165 | 2cn | |- 2 e. CC |
|
| 166 | 121 | nncnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> N e. CC ) |
| 167 | sqmul | |- ( ( 2 e. CC /\ N e. CC ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
|
| 168 | 165 166 167 | sylancr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) ) |
| 169 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 170 | 169 | oveq1i | |- ( ( 2 ^ 2 ) x. ( N ^ 2 ) ) = ( 4 x. ( N ^ 2 ) ) |
| 171 | 168 170 | eqtrdi | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) = ( 4 x. ( N ^ 2 ) ) ) |
| 172 | 164 171 | breqtrrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( N ^ 2 ) ) < ( ( 2 x. N ) ^ 2 ) ) |
| 173 | 119 134 125 155 172 | lelttrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) < ( ( 2 x. N ) ^ 2 ) ) |
| 174 | 127 | nnrpd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. ( 2 x. N ) ) e. RR+ ) |
| 175 | 125 174 | ltaddrpd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( 2 x. N ) ^ 2 ) < ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) ) |
| 176 | 119 125 129 173 175 | lttrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( m ^ 2 ) + ( n ^ 2 ) ) < ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) ) |
| 177 | 119 129 130 176 | ltadd1dd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 178 | 3 | 3ad2ant1 | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> P = ( ( 2 x. N ) + 1 ) ) |
| 179 | 178 | oveq1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P ^ 2 ) = ( ( ( 2 x. N ) + 1 ) ^ 2 ) ) |
| 180 | 95 | sqvald | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P ^ 2 ) = ( P x. P ) ) |
| 181 | 123 | nncnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( 2 x. N ) e. CC ) |
| 182 | binom21 | |- ( ( 2 x. N ) e. CC -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
|
| 183 | 181 182 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( 2 x. N ) + 1 ) ^ 2 ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 184 | 179 180 183 | 3eqtr3d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( P x. P ) = ( ( ( ( 2 x. N ) ^ 2 ) + ( 2 x. ( 2 x. N ) ) ) + 1 ) ) |
| 185 | 177 184 | breqtrrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) |
| 186 | 101 | nnred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR ) |
| 187 | 45 | nngt0d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> 0 < P ) |
| 188 | ltdivmul | |- ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. RR /\ P e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P <-> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) ) |
|
| 189 | 186 51 51 187 188 | syl112anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P <-> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) < ( P x. P ) ) ) |
| 190 | 185 189 | mpbird | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) |
| 191 | 1z | |- 1 e. ZZ |
|
| 192 | elfzm11 | |- ( ( 1 e. ZZ /\ P e. ZZ ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) /\ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) ) ) |
|
| 193 | 191 68 192 | sylancr | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) <-> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ZZ /\ 1 <_ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) /\ ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) < P ) ) ) |
| 194 | 109 118 190 193 | mpbir3and | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) ) |
| 195 | gzreim | |- ( ( m e. ZZ /\ n e. ZZ ) -> ( m + ( _i x. n ) ) e. Z[i] ) |
|
| 196 | 79 57 195 | syl2anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m + ( _i x. n ) ) e. Z[i] ) |
| 197 | gzcn | |- ( ( m + ( _i x. n ) ) e. Z[i] -> ( m + ( _i x. n ) ) e. CC ) |
|
| 198 | 196 197 | syl | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( m + ( _i x. n ) ) e. CC ) |
| 199 | 198 | absvalsq2d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) + ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) ) ) |
| 200 | 137 145 | crred | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( Re ` ( m + ( _i x. n ) ) ) = m ) |
| 201 | 200 | oveq1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( m ^ 2 ) ) |
| 202 | 137 145 | crimd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( Im ` ( m + ( _i x. n ) ) ) = n ) |
| 203 | 202 | oveq1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( n ^ 2 ) ) |
| 204 | 201 203 | oveq12d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( Re ` ( m + ( _i x. n ) ) ) ^ 2 ) + ( ( Im ` ( m + ( _i x. n ) ) ) ^ 2 ) ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) |
| 205 | 199 204 | eqtrd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) = ( ( m ^ 2 ) + ( n ^ 2 ) ) ) |
| 206 | 205 | oveq1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
| 207 | 101 | nncnd | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) e. CC ) |
| 208 | 207 95 106 | divcan1d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) = ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) ) |
| 209 | 206 208 | eqtr4d | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) |
| 210 | oveq1 | |- ( k = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) -> ( k x. P ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) |
|
| 211 | 210 | eqeq2d | |- ( k = ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) <-> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) ) |
| 212 | fveq2 | |- ( u = ( m + ( _i x. n ) ) -> ( abs ` u ) = ( abs ` ( m + ( _i x. n ) ) ) ) |
|
| 213 | 212 | oveq1d | |- ( u = ( m + ( _i x. n ) ) -> ( ( abs ` u ) ^ 2 ) = ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) ) |
| 214 | 213 | oveq1d | |- ( u = ( m + ( _i x. n ) ) -> ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) ) |
| 215 | 214 | eqeq1d | |- ( u = ( m + ( _i x. n ) ) -> ( ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) <-> ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) ) |
| 216 | 211 215 | rspc2ev | |- ( ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) e. ( 1 ... ( P - 1 ) ) /\ ( m + ( _i x. n ) ) e. Z[i] /\ ( ( ( abs ` ( m + ( _i x. n ) ) ) ^ 2 ) + 1 ) = ( ( ( ( ( m ^ 2 ) + ( n ^ 2 ) ) + 1 ) / P ) x. P ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| 217 | 194 196 209 216 | syl3anc | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) /\ ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |
| 218 | 217 | 3expia | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) ) -> ( ( ( m ^ 2 ) mod P ) = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 219 | 42 218 | syl5 | |- ( ( ph /\ ( m e. ( 0 ... N ) /\ n e. ( 0 ... N ) ) ) -> ( ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 220 | 219 | rexlimdvva | |- ( ph -> ( E. m e. ( 0 ... N ) E. n e. ( 0 ... N ) ( j = ( ( m ^ 2 ) mod P ) /\ j = ( ( P - 1 ) - ( ( n ^ 2 ) mod P ) ) ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 221 | 41 220 | biimtrid | |- ( ph -> ( j e. ( A i^i ran F ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 222 | 221 | exlimdv | |- ( ph -> ( E. j j e. ( A i^i ran F ) -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) ) |
| 223 | 9 222 | mpd | |- ( ph -> E. k e. ( 1 ... ( P - 1 ) ) E. u e. Z[i] ( ( ( abs ` u ) ^ 2 ) + 1 ) = ( k x. P ) ) |