This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Z/nZ structure is a domain (and hence a field) precisely when n is prime. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zntos.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| Assertion | znidomb | ⊢ ( 𝑁 ∈ ℕ → ( 𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zntos.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | 2z | ⊢ 2 ∈ ℤ | |
| 3 | 2 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2 ∈ ℤ ) |
| 4 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 𝑁 ∈ ℤ ) |
| 6 | hash2 | ⊢ ( ♯ ‘ 2o ) = 2 | |
| 7 | isidom | ⊢ ( 𝑌 ∈ IDomn ↔ ( 𝑌 ∈ CRing ∧ 𝑌 ∈ Domn ) ) | |
| 8 | 7 | simprbi | ⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ Domn ) |
| 9 | domnnzr | ⊢ ( 𝑌 ∈ Domn → 𝑌 ∈ NzRing ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ NzRing ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 12 | 11 | isnzr2 | ⊢ ( 𝑌 ∈ NzRing ↔ ( 𝑌 ∈ Ring ∧ 2o ≼ ( Base ‘ 𝑌 ) ) ) |
| 13 | 12 | simprbi | ⊢ ( 𝑌 ∈ NzRing → 2o ≼ ( Base ‘ 𝑌 ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝑌 ∈ IDomn → 2o ≼ ( Base ‘ 𝑌 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2o ≼ ( Base ‘ 𝑌 ) ) |
| 16 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 17 | prfi | ⊢ { ∅ , { ∅ } } ∈ Fin | |
| 18 | 16 17 | eqeltri | ⊢ 2o ∈ Fin |
| 19 | fvex | ⊢ ( Base ‘ 𝑌 ) ∈ V | |
| 20 | hashdom | ⊢ ( ( 2o ∈ Fin ∧ ( Base ‘ 𝑌 ) ∈ V ) → ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) ) | |
| 21 | 18 19 20 | mp2an | ⊢ ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) |
| 22 | 15 21 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
| 23 | 6 22 | eqbrtrrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2 ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
| 24 | 1 11 | znhash | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
| 26 | 23 25 | breqtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2 ≤ 𝑁 ) |
| 27 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) | |
| 28 | 3 5 26 27 | syl3anbrc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 29 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 31 | nncn | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) | |
| 32 | 31 | ad2antrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℂ ) |
| 33 | nnne0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ≠ 0 ) | |
| 34 | 33 | ad2antrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ≠ 0 ) |
| 35 | 30 32 34 | divcan1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( 𝑁 / 𝑥 ) · 𝑥 ) = 𝑁 ) |
| 36 | 35 | fveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( ( 𝑁 / 𝑥 ) · 𝑥 ) ) = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) ) |
| 37 | 8 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑌 ∈ Domn ) |
| 38 | domnring | ⊢ ( 𝑌 ∈ Domn → 𝑌 ∈ Ring ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑌 ∈ Ring ) |
| 40 | eqid | ⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) | |
| 41 | 40 | zrhrhm | ⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 42 | 39 41 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 43 | simprr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∥ 𝑁 ) | |
| 44 | nnz | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) | |
| 45 | 44 | ad2antrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℤ ) |
| 46 | 4 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 47 | dvdsval2 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝑥 ) ∈ ℤ ) ) | |
| 48 | 45 34 46 47 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝑥 ) ∈ ℤ ) ) |
| 49 | 43 48 | mpbid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 / 𝑥 ) ∈ ℤ ) |
| 50 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 51 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 52 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 53 | 50 51 52 | rhmmul | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ∧ ( 𝑁 / 𝑥 ) ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( ( 𝑁 / 𝑥 ) · 𝑥 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) ) |
| 54 | 42 49 45 53 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( ( 𝑁 / 𝑥 ) · 𝑥 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) ) |
| 55 | iddvds | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) | |
| 56 | 46 55 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∥ 𝑁 ) |
| 57 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 59 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 60 | 1 40 59 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑁 ) ) |
| 61 | 58 46 60 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑁 ) ) |
| 62 | 56 61 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) = ( 0g ‘ 𝑌 ) ) |
| 63 | 36 54 62 | 3eqtr3d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑌 ) ) |
| 64 | 50 11 | rhmf | ⊢ ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 65 | 42 64 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 66 | 65 49 | ffvelcdmd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 67 | 65 45 | ffvelcdmd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑌 ) ) |
| 68 | 11 52 59 | domneq0 | ⊢ ( ( 𝑌 ∈ Domn ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 69 | 37 66 67 68 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 70 | 63 69 | mpbid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) |
| 71 | 1 40 59 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 𝑥 ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / 𝑥 ) ) ) |
| 72 | 58 49 71 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / 𝑥 ) ) ) |
| 73 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 75 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 76 | 75 | ad2antrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 77 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < 𝑁 ) |
| 79 | nngt0 | ⊢ ( 𝑥 ∈ ℕ → 0 < 𝑥 ) | |
| 80 | 79 | ad2antrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < 𝑥 ) |
| 81 | 74 76 78 80 | divgt0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < ( 𝑁 / 𝑥 ) ) |
| 82 | elnnz | ⊢ ( ( 𝑁 / 𝑥 ) ∈ ℕ ↔ ( ( 𝑁 / 𝑥 ) ∈ ℤ ∧ 0 < ( 𝑁 / 𝑥 ) ) ) | |
| 83 | 49 81 82 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 / 𝑥 ) ∈ ℕ ) |
| 84 | dvdsle | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 / 𝑥 ) ∈ ℕ ) → ( 𝑁 ∥ ( 𝑁 / 𝑥 ) → 𝑁 ≤ ( 𝑁 / 𝑥 ) ) ) | |
| 85 | 46 83 84 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ∥ ( 𝑁 / 𝑥 ) → 𝑁 ≤ ( 𝑁 / 𝑥 ) ) ) |
| 86 | 1red | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 1 ∈ ℝ ) | |
| 87 | 0lt1 | ⊢ 0 < 1 | |
| 88 | 87 | a1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < 1 ) |
| 89 | lediv2 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 𝑥 ≤ 1 ↔ ( 𝑁 / 1 ) ≤ ( 𝑁 / 𝑥 ) ) ) | |
| 90 | 76 80 86 88 74 78 89 | syl222anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 ≤ 1 ↔ ( 𝑁 / 1 ) ≤ ( 𝑁 / 𝑥 ) ) ) |
| 91 | nnle1eq1 | ⊢ ( 𝑥 ∈ ℕ → ( 𝑥 ≤ 1 ↔ 𝑥 = 1 ) ) | |
| 92 | 91 | ad2antrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 ≤ 1 ↔ 𝑥 = 1 ) ) |
| 93 | 30 | div1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 / 1 ) = 𝑁 ) |
| 94 | 93 | breq1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( 𝑁 / 1 ) ≤ ( 𝑁 / 𝑥 ) ↔ 𝑁 ≤ ( 𝑁 / 𝑥 ) ) ) |
| 95 | 90 92 94 | 3bitr3rd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ≤ ( 𝑁 / 𝑥 ) ↔ 𝑥 = 1 ) ) |
| 96 | 85 95 | sylibd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ∥ ( 𝑁 / 𝑥 ) → 𝑥 = 1 ) ) |
| 97 | 72 96 | sylbid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) → 𝑥 = 1 ) ) |
| 98 | 1 40 59 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
| 99 | 58 45 98 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
| 100 | nnnn0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) | |
| 101 | 100 | ad2antrl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℕ0 ) |
| 102 | dvdseq | ⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑥 ∥ 𝑁 ∧ 𝑁 ∥ 𝑥 ) ) → 𝑥 = 𝑁 ) | |
| 103 | 102 | expr | ⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∥ 𝑁 ) → ( 𝑁 ∥ 𝑥 → 𝑥 = 𝑁 ) ) |
| 104 | 101 58 43 103 | syl21anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ∥ 𝑥 → 𝑥 = 𝑁 ) ) |
| 105 | 99 104 | sylbid | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) → 𝑥 = 𝑁 ) ) |
| 106 | 97 105 | orim12d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) |
| 107 | 70 106 | mpd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) |
| 108 | 107 | expr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∥ 𝑁 → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) |
| 109 | 108 | ralrimiva | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → ∀ 𝑥 ∈ ℕ ( 𝑥 ∥ 𝑁 → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) |
| 110 | isprm2 | ⊢ ( 𝑁 ∈ ℙ ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℕ ( 𝑥 ∥ 𝑁 → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) ) | |
| 111 | 28 109 110 | sylanbrc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 𝑁 ∈ ℙ ) |
| 112 | 111 | ex | ⊢ ( 𝑁 ∈ ℕ → ( 𝑌 ∈ IDomn → 𝑁 ∈ ℙ ) ) |
| 113 | 1 | znfld | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Field ) |
| 114 | fldidom | ⊢ ( 𝑌 ∈ Field → 𝑌 ∈ IDomn ) | |
| 115 | 113 114 | syl | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ IDomn ) |
| 116 | 112 115 | impbid1 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ ) ) |