This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of zndvds when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zncyg.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| zndvds.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| zndvds0.3 | ⊢ 0 = ( 0g ‘ 𝑌 ) | ||
| Assertion | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = 0 ↔ 𝑁 ∥ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncyg.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | zndvds.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 3 | zndvds0.3 | ⊢ 0 = ( 0g ‘ 𝑌 ) | |
| 4 | 0z | ⊢ 0 ∈ ℤ | |
| 5 | 1 2 | zndvds | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 0 ) ↔ 𝑁 ∥ ( 𝐴 − 0 ) ) ) |
| 6 | 4 5 | mp3an3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 0 ) ↔ 𝑁 ∥ ( 𝐴 − 0 ) ) ) |
| 7 | 1 | zncrng | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝑌 ∈ CRing ) |
| 9 | crngring | ⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) | |
| 10 | 2 | zrhrhm | ⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
| 11 | 8 9 10 | 3syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
| 12 | rhmghm | ⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) | |
| 13 | zring0 | ⊢ 0 = ( 0g ‘ ℤring ) | |
| 14 | 13 3 | ghmid | ⊢ ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) → ( 𝐿 ‘ 0 ) = 0 ) |
| 15 | 11 12 14 | 3syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐿 ‘ 0 ) = 0 ) |
| 16 | 15 | eqeq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 0 ) ↔ ( 𝐿 ‘ 𝐴 ) = 0 ) ) |
| 17 | simpr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 18 | 17 | zcnd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 19 | 18 | subid1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 20 | 19 | breq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝑁 ∥ ( 𝐴 − 0 ) ↔ 𝑁 ∥ 𝐴 ) ) |
| 21 | 6 16 20 | 3bitr3d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = 0 ↔ 𝑁 ∥ 𝐴 ) ) |