This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isnzr2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | isnzr2 | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 2o ≼ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnzr2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 4 | 2 3 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 5 | 1 2 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 7 | 1 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 9 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) | |
| 10 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 11 | neeq1 | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝑥 ≠ 𝑦 ↔ ( 1r ‘ 𝑅 ) ≠ 𝑦 ) ) | |
| 12 | 10 11 | bitr3id | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ¬ 𝑥 = 𝑦 ↔ ( 1r ‘ 𝑅 ) ≠ 𝑦 ) ) |
| 13 | neeq2 | ⊢ ( 𝑦 = ( 0g ‘ 𝑅 ) → ( ( 1r ‘ 𝑅 ) ≠ 𝑦 ↔ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) | |
| 14 | 12 13 | rspc2ev | ⊢ ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 ) |
| 15 | 6 8 9 14 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 ) |
| 16 | 15 | ex | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 ) ) |
| 17 | 1 2 3 | ring1eq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 19 | 18 | necon3bd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ 𝑥 = 𝑦 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 20 | 19 | rexlimdvva | ⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 21 | 16 20 | impbid | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 ) ) |
| 22 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 23 | 1sdom | ⊢ ( 𝐵 ∈ V → ( 1o ≺ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( 1o ≺ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 ) |
| 25 | 21 24 | bitr4di | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ↔ 1o ≺ 𝐵 ) ) |
| 26 | 1onn | ⊢ 1o ∈ ω | |
| 27 | sucdom | ⊢ ( 1o ∈ ω → ( 1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵 ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ( 1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵 ) |
| 29 | df-2o | ⊢ 2o = suc 1o | |
| 30 | 29 | breq1i | ⊢ ( 2o ≼ 𝐵 ↔ suc 1o ≼ 𝐵 ) |
| 31 | 28 30 | bitr4i | ⊢ ( 1o ≺ 𝐵 ↔ 2o ≼ 𝐵 ) |
| 32 | 25 31 | bitrdi | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ↔ 2o ≼ 𝐵 ) ) |
| 33 | 32 | pm5.32i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑅 ∈ Ring ∧ 2o ≼ 𝐵 ) ) |
| 34 | 4 33 | bitri | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 2o ≼ 𝐵 ) ) |