This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in ApostolNT p. 16. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm2 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nprm | ⊢ ¬ 1 ∈ ℙ | |
| 2 | eleq1 | ⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ ↔ 1 ∈ ℙ ) ) | |
| 3 | 2 | biimpcd | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 1 → 1 ∈ ℙ ) ) |
| 4 | 1 3 | mtoi | ⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 = 1 ) |
| 5 | 4 | neqned | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ≠ 1 ) |
| 6 | 5 | pm4.71i | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 1 ) ) |
| 7 | isprm | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) ) | |
| 8 | isprm2lem | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) | |
| 9 | eqss | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ↔ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ∧ { 1 , 𝑃 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) ) | |
| 10 | 9 | imbi2i | ⊢ ( ( 𝑃 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ↔ ( 𝑃 ∈ ℕ → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ∧ { 1 , 𝑃 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) ) ) |
| 11 | 1idssfct | ⊢ ( 𝑃 ∈ ℕ → { 1 , 𝑃 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) | |
| 12 | jcab | ⊢ ( ( 𝑃 ∈ ℕ → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ∧ { 1 , 𝑃 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) ) ↔ ( ( 𝑃 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ∧ ( 𝑃 ∈ ℕ → { 1 , 𝑃 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) ) ) | |
| 13 | 11 12 | mpbiran2 | ⊢ ( ( 𝑃 ∈ ℕ → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ∧ { 1 , 𝑃 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) ) ↔ ( 𝑃 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) |
| 14 | 10 13 | bitri | ⊢ ( ( 𝑃 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ↔ ( 𝑃 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) |
| 15 | 14 | pm5.74ri | ⊢ ( 𝑃 ∈ ℕ → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) |
| 17 | 8 16 | bitrd | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) |
| 18 | 17 | expcom | ⊢ ( 𝑃 ≠ 1 → ( 𝑃 ∈ ℕ → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) ) |
| 19 | 18 | pm5.32d | ⊢ ( 𝑃 ≠ 1 → ( ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) ↔ ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) ) |
| 20 | 7 19 | bitrid | ⊢ ( 𝑃 ≠ 1 → ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) ) |
| 21 | 20 | pm5.32ri | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 1 ) ↔ ( ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ∧ 𝑃 ≠ 1 ) ) |
| 22 | ancom | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ∧ 𝑃 ≠ 1 ) ↔ ( 𝑃 ≠ 1 ∧ ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) ) | |
| 23 | anass | ⊢ ( ( ( 𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ↔ ( 𝑃 ≠ 1 ∧ ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) ) | |
| 24 | 22 23 | bitr4i | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ∧ 𝑃 ≠ 1 ) ↔ ( ( 𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) |
| 25 | ancom | ⊢ ( ( 𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ ) ↔ ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ) | |
| 26 | eluz2b3 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ) | |
| 27 | 25 26 | bitr4i | ⊢ ( ( 𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ ) ↔ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 28 | 27 | anbi1i | ⊢ ( ( ( 𝑃 ≠ 1 ∧ 𝑃 ∈ ℕ ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ) |
| 29 | df-ss | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } → 𝑧 ∈ { 1 , 𝑃 } ) ) | |
| 30 | breq1 | ⊢ ( 𝑛 = 𝑧 → ( 𝑛 ∥ 𝑃 ↔ 𝑧 ∥ 𝑃 ) ) | |
| 31 | 30 | elrab | ⊢ ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) ) |
| 32 | vex | ⊢ 𝑧 ∈ V | |
| 33 | 32 | elpr | ⊢ ( 𝑧 ∈ { 1 , 𝑃 } ↔ ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) |
| 34 | 31 33 | imbi12i | ⊢ ( ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } → 𝑧 ∈ { 1 , 𝑃 } ) ↔ ( ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 35 | impexp | ⊢ ( ( ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 𝑃 ) → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) | |
| 36 | 34 35 | bitri | ⊢ ( ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } → 𝑧 ∈ { 1 , 𝑃 } ) ↔ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 37 | 36 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } → 𝑧 ∈ { 1 , 𝑃 } ) ↔ ∀ 𝑧 ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 38 | df-ral | ⊢ ( ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) | |
| 39 | 37 38 | bitr4i | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } → 𝑧 ∈ { 1 , 𝑃 } ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 40 | 29 39 | bitri | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 41 | 40 | anbi2i | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 42 | 24 28 41 | 3bitri | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ⊆ { 1 , 𝑃 } ) ∧ 𝑃 ≠ 1 ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |
| 43 | 6 21 42 | 3bitri | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) |