This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Z/nZ structure is a finite field when n is prime. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zntos.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| Assertion | znfld | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Field ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zntos.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | prmnn | ⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ ) | |
| 3 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ0 ) |
| 5 | 1 | zncrng | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ CRing ) |
| 7 | crngring | ⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) | |
| 8 | 2 3 5 7 | 4syl | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Ring ) |
| 9 | hash2 | ⊢ ( ♯ ‘ 2o ) = 2 | |
| 10 | prmuz2 | ⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 11 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑁 ∈ ℙ → 2 ≤ 𝑁 ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 14 | 1 13 | znhash | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
| 15 | 2 14 | syl | ⊢ ( 𝑁 ∈ ℙ → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
| 16 | 12 15 | breqtrrd | ⊢ ( 𝑁 ∈ ℙ → 2 ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
| 17 | 9 16 | eqbrtrid | ⊢ ( 𝑁 ∈ ℙ → ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
| 18 | 2onn | ⊢ 2o ∈ ω | |
| 19 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 20 | 18 19 | ax-mp | ⊢ 2o ∈ Fin |
| 21 | fvex | ⊢ ( Base ‘ 𝑌 ) ∈ V | |
| 22 | hashdom | ⊢ ( ( 2o ∈ Fin ∧ ( Base ‘ 𝑌 ) ∈ V ) → ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) ) | |
| 23 | 20 21 22 | mp2an | ⊢ ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) |
| 24 | 17 23 | sylib | ⊢ ( 𝑁 ∈ ℙ → 2o ≼ ( Base ‘ 𝑌 ) ) |
| 25 | 13 | isnzr2 | ⊢ ( 𝑌 ∈ NzRing ↔ ( 𝑌 ∈ Ring ∧ 2o ≼ ( Base ‘ 𝑌 ) ) ) |
| 26 | 8 24 25 | sylanbrc | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ NzRing ) |
| 27 | eqid | ⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) | |
| 28 | 1 13 27 | znzrhfo | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 29 | 4 28 | syl | ⊢ ( 𝑁 ∈ ℙ → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 30 | foelrn | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ) | |
| 31 | foelrn | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) | |
| 32 | 30 31 | anim12dan | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
| 33 | 29 32 | sylan | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
| 34 | reeanv | ⊢ ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ↔ ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | |
| 35 | euclemma | ⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( 𝑁 ∥ ( 𝑧 · 𝑤 ) ↔ ( 𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤 ) ) ) | |
| 36 | 35 | 3expb | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝑧 · 𝑤 ) ↔ ( 𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤 ) ) ) |
| 37 | 8 | adantr | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → 𝑌 ∈ Ring ) |
| 38 | 27 | zrhrhm | ⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 39 | 37 38 | syl | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 40 | simprl | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) | |
| 41 | simprr | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → 𝑤 ∈ ℤ ) | |
| 42 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 43 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 44 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 45 | 42 43 44 | rhmmul | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
| 46 | 39 40 41 45 | syl3anc | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
| 47 | 46 | eqeq1d | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 48 | zmulcl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( 𝑧 · 𝑤 ) ∈ ℤ ) | |
| 49 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 50 | 1 27 49 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑧 · 𝑤 ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑧 · 𝑤 ) ) ) |
| 51 | 4 48 50 | syl2an | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑧 · 𝑤 ) ) ) |
| 52 | 47 51 | bitr3d | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑧 · 𝑤 ) ) ) |
| 53 | 1 27 49 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑧 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑧 ) ) |
| 54 | 4 40 53 | syl2an2r | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑧 ) ) |
| 55 | 1 27 49 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑤 ) ) |
| 56 | 4 41 55 | syl2an2r | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑤 ) ) |
| 57 | 54 56 | orbi12d | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ↔ ( 𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤 ) ) ) |
| 58 | 36 52 57 | 3bitr4d | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 59 | 58 | biimpd | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 60 | oveq12 | ⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | |
| 61 | 60 | eqeq1d | ⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 62 | eqeq1 | ⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ) ) | |
| 63 | 62 | orbi1d | ⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) → ( ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
| 64 | eqeq1 | ⊢ ( 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) → ( 𝑦 = ( 0g ‘ 𝑌 ) ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) | |
| 65 | 64 | orbi2d | ⊢ ( 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 66 | 63 65 | sylan9bb | ⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 67 | 61 66 | imbi12d | ⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ↔ ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) ) |
| 68 | 59 67 | syl5ibrcom | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
| 69 | 68 | rexlimdvva | ⊢ ( 𝑁 ∈ ℙ → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
| 70 | 34 69 | biimtrrid | ⊢ ( 𝑁 ∈ ℙ → ( ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
| 71 | 70 | imp | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
| 72 | 33 71 | syldan | ⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
| 73 | 72 | ralrimivva | ⊢ ( 𝑁 ∈ ℙ → ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
| 74 | 13 44 49 | isdomn | ⊢ ( 𝑌 ∈ Domn ↔ ( 𝑌 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
| 75 | 26 73 74 | sylanbrc | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Domn ) |
| 76 | isidom | ⊢ ( 𝑌 ∈ IDomn ↔ ( 𝑌 ∈ CRing ∧ 𝑌 ∈ Domn ) ) | |
| 77 | 6 75 76 | sylanbrc | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ IDomn ) |
| 78 | 1 13 | znfi | ⊢ ( 𝑁 ∈ ℕ → ( Base ‘ 𝑌 ) ∈ Fin ) |
| 79 | 2 78 | syl | ⊢ ( 𝑁 ∈ ℙ → ( Base ‘ 𝑌 ) ∈ Fin ) |
| 80 | 13 | fiidomfld | ⊢ ( ( Base ‘ 𝑌 ) ∈ Fin → ( 𝑌 ∈ IDomn ↔ 𝑌 ∈ Field ) ) |
| 81 | 79 80 | syl | ⊢ ( 𝑁 ∈ ℙ → ( 𝑌 ∈ IDomn ↔ 𝑌 ∈ Field ) ) |
| 82 | 77 81 | mpbid | ⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Field ) |