This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | znchr.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| Assertion | znchr | ⊢ ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znchr.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | 1 | zncrng | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 3 | crngring | ⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Ring ) |
| 5 | nn0z | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ ) | |
| 6 | eqid | ⊢ ( chr ‘ 𝑌 ) = ( chr ‘ 𝑌 ) | |
| 7 | eqid | ⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 9 | 6 7 8 | chrdvds | ⊢ ( ( 𝑌 ∈ Ring ∧ 𝑥 ∈ ℤ ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) |
| 10 | 4 5 9 | syl2an | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) |
| 11 | 1 7 8 | zndvds0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
| 12 | 5 11 | sylan2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
| 13 | 10 12 | bitrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) |
| 15 | 6 | chrcl | ⊢ ( 𝑌 ∈ Ring → ( chr ‘ 𝑌 ) ∈ ℕ0 ) |
| 16 | 4 15 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) ∈ ℕ0 ) |
| 17 | dvdsext | ⊢ ( ( ( chr ‘ 𝑌 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) = 𝑁 ↔ ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) ) | |
| 18 | 16 17 | mpancom | ⊢ ( 𝑁 ∈ ℕ0 → ( ( chr ‘ 𝑌 ) = 𝑁 ↔ ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) ) |
| 19 | 14 18 | mpbird | ⊢ ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) = 𝑁 ) |