This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Z/nZ structure has n elements. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zntos.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| znhash.1 | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | znhash | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝐵 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zntos.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | znhash.1 | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 4 | eqid | ⊢ ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) = ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) | |
| 5 | eqid | ⊢ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | |
| 6 | 1 2 4 5 | znf1o | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) –1-1-onto→ 𝐵 ) |
| 7 | 3 6 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) –1-1-onto→ 𝐵 ) |
| 8 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 9 | ifnefalse | ⊢ ( 𝑁 ≠ 0 → if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) = ( 0 ..^ 𝑁 ) ) | |
| 10 | f1oeq2 | ⊢ ( if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) = ( 0 ..^ 𝑁 ) → ( ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) –1-1-onto→ 𝐵 ↔ ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐵 ) ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) –1-1-onto→ 𝐵 ↔ ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐵 ) ) |
| 12 | 7 11 | mpbid | ⊢ ( 𝑁 ∈ ℕ → ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐵 ) |
| 13 | ovex | ⊢ ( 0 ..^ 𝑁 ) ∈ V | |
| 14 | 13 | f1oen | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐵 → ( 0 ..^ 𝑁 ) ≈ 𝐵 ) |
| 15 | ensym | ⊢ ( ( 0 ..^ 𝑁 ) ≈ 𝐵 → 𝐵 ≈ ( 0 ..^ 𝑁 ) ) | |
| 16 | hasheni | ⊢ ( 𝐵 ≈ ( 0 ..^ 𝑁 ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) | |
| 17 | 12 14 15 16 | 4syl | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
| 18 | hashfzo0 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) | |
| 19 | 3 18 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 20 | 17 19 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝐵 ) = 𝑁 ) |