This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| Assertion | zrhrhm | ⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | eqid | ⊢ 𝐿 = 𝐿 | |
| 3 | 1 | zrhrhmb | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ↔ 𝐿 = 𝐿 ) ) |
| 4 | 2 3 | mpbiri | ⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |