This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domneq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| domneq0.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| domneq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | domneq0 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domneq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | domneq0.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | domneq0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 3simpc | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) | |
| 5 | 1 2 3 | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝑅 ∈ Domn → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑦 ) = 0 ) ) |
| 10 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) | |
| 11 | 10 | orbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑋 = 0 ∨ 𝑦 = 0 ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ( 𝑋 · 𝑦 ) = 0 → ( 𝑋 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑌 ) = 0 ) ) |
| 15 | eqeq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 = 0 ↔ 𝑌 = 0 ) ) | |
| 16 | 15 | orbi2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 17 | 14 16 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 · 𝑦 ) = 0 → ( 𝑋 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) ) |
| 18 | 12 17 | rspc2va | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 19 | 4 7 18 | syl2anc | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 → ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 20 | domnring | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) | |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 22 | simp3 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 23 | 1 2 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = 0 ) |
| 24 | 21 22 23 | syl2anc | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = 0 ) |
| 25 | oveq1 | ⊢ ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ) | |
| 26 | 25 | eqeq1d | ⊢ ( 𝑋 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 0 · 𝑌 ) = 0 ) ) |
| 27 | 24 26 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 28 | simp2 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 29 | 1 2 3 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| 30 | 21 28 29 | syl2anc | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| 31 | oveq2 | ⊢ ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) | |
| 32 | 31 | eqeq1d | ⊢ ( 𝑌 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 · 0 ) = 0 ) ) |
| 33 | 30 32 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 34 | 27 33 | jaod | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 = 0 ∨ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 35 | 19 34 | impbid | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |