This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair is finite. For a shorter proof using ax-un , see prfiALT . (Contributed by NM, 22-Aug-2008) Avoid ax-11 , ax-un . (Revised by BTernaryTau, 13-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } = { 𝐵 } ) | |
| 2 | snfi | ⊢ { 𝐵 } ∈ Fin | |
| 3 | 1 2 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 , 𝐵 } ∈ Fin ) |
| 4 | prprc2 | ⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } ) | |
| 5 | snfi | ⊢ { 𝐴 } ∈ Fin | |
| 6 | 4 5 | eqeltrdi | ⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } ∈ Fin ) |
| 7 | 2onn | ⊢ 2o ∈ ω | |
| 8 | simp1 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ V ) | |
| 9 | simp2 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ V ) | |
| 10 | simp3 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) | |
| 11 | 8 9 10 | enpr2d | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 12 | breq2 | ⊢ ( 𝑥 = 2o → ( { 𝐴 , 𝐵 } ≈ 𝑥 ↔ { 𝐴 , 𝐵 } ≈ 2o ) ) | |
| 13 | 12 | rspcev | ⊢ ( ( 2o ∈ ω ∧ { 𝐴 , 𝐵 } ≈ 2o ) → ∃ 𝑥 ∈ ω { 𝐴 , 𝐵 } ≈ 𝑥 ) |
| 14 | 7 11 13 | sylancr | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → ∃ 𝑥 ∈ ω { 𝐴 , 𝐵 } ≈ 𝑥 ) |
| 15 | isfi | ⊢ ( { 𝐴 , 𝐵 } ∈ Fin ↔ ∃ 𝑥 ∈ ω { 𝐴 , 𝐵 } ≈ 𝑥 ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ¬ 𝐴 = 𝐵 ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 17 | 16 | 3expia | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ¬ 𝐴 = 𝐵 → { 𝐴 , 𝐵 } ∈ Fin ) ) |
| 18 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
| 19 | preq2 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) | |
| 20 | 18 19 | eqtr2id | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 21 | 20 5 | eqeltrdi | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 22 | 17 21 | pm2.61d2 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 23 | 3 6 22 | ecase | ⊢ { 𝐴 , 𝐵 } ∈ Fin |