This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: F maps to explicit expression for the ratio of two consecutive values of I . (Contributed by Glauco Siliprandi, 30-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wallispilem4.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| wallispilem4.2 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑧 ) ↑ 𝑛 ) d 𝑧 ) | ||
| wallispilem4.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) | ||
| wallispilem4.4 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) | ||
| Assertion | wallispilem4 | ⊢ 𝐺 = 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem4.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| 2 | wallispilem4.2 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑧 ) ↑ 𝑛 ) d 𝑧 ) | |
| 3 | wallispilem4.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 4 | wallispilem4.4 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = 1 → ( 2 · 𝑥 ) = ( 2 · 1 ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑥 = 1 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 1 ) ) ) |
| 7 | 5 | fvoveq1d | ⊢ ( 𝑥 = 1 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) |
| 8 | 6 7 | oveq12d | ⊢ ( 𝑥 = 1 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 1 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝑥 = 1 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 1 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) ) |
| 12 | 8 11 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) |
| 15 | 13 | fvoveq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) |
| 20 | 16 19 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 2 · 𝑥 ) = ( 2 · ( 𝑦 + 1 ) ) ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) ) |
| 23 | 21 | fvoveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) |
| 24 | 22 23 | oveq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) | |
| 26 | 25 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 28 | 24 27 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) ) |
| 29 | oveq2 | ⊢ ( 𝑥 = 𝑛 → ( 2 · 𝑥 ) = ( 2 · 𝑛 ) ) | |
| 30 | 29 | fveq2d | ⊢ ( 𝑥 = 𝑛 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 𝑛 ) ) ) |
| 31 | 29 | fvoveq1d | ⊢ ( 𝑥 = 𝑛 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 32 | 30 31 | oveq12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 33 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) | |
| 34 | 33 | oveq2d | ⊢ ( 𝑥 = 𝑛 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝑥 = 𝑛 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 36 | 32 35 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 37 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 38 | 37 | fveq2i | ⊢ ( 𝐼 ‘ ( 2 · 1 ) ) = ( 𝐼 ‘ 2 ) |
| 39 | 37 | oveq1i | ⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
| 40 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 41 | 39 40 | eqtri | ⊢ ( ( 2 · 1 ) + 1 ) = 3 |
| 42 | 41 | fveq2i | ⊢ ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) = ( 𝐼 ‘ 3 ) |
| 43 | 38 42 | oveq12i | ⊢ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( 𝐼 ‘ 2 ) / ( 𝐼 ‘ 3 ) ) |
| 44 | 2z | ⊢ 2 ∈ ℤ | |
| 45 | uzid | ⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 46 | 44 45 | ax-mp | ⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 47 | 2 | wallispilem2 | ⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) ) ) |
| 48 | 47 | simp3i | ⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) ) |
| 49 | 46 48 | ax-mp | ⊢ ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) |
| 50 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 51 | 50 | oveq1i | ⊢ ( ( 2 − 1 ) / 2 ) = ( 1 / 2 ) |
| 52 | 2cn | ⊢ 2 ∈ ℂ | |
| 53 | 52 | subidi | ⊢ ( 2 − 2 ) = 0 |
| 54 | 53 | fveq2i | ⊢ ( 𝐼 ‘ ( 2 − 2 ) ) = ( 𝐼 ‘ 0 ) |
| 55 | 47 | simp1i | ⊢ ( 𝐼 ‘ 0 ) = π |
| 56 | 54 55 | eqtri | ⊢ ( 𝐼 ‘ ( 2 − 2 ) ) = π |
| 57 | 51 56 | oveq12i | ⊢ ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) = ( ( 1 / 2 ) · π ) |
| 58 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 59 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 60 | picn | ⊢ π ∈ ℂ | |
| 61 | div32 | ⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ π ∈ ℂ ) → ( ( 1 / 2 ) · π ) = ( 1 · ( π / 2 ) ) ) | |
| 62 | 58 59 60 61 | mp3an | ⊢ ( ( 1 / 2 ) · π ) = ( 1 · ( π / 2 ) ) |
| 63 | 2ne0 | ⊢ 2 ≠ 0 | |
| 64 | 60 52 63 | divcli | ⊢ ( π / 2 ) ∈ ℂ |
| 65 | 64 | mullidi | ⊢ ( 1 · ( π / 2 ) ) = ( π / 2 ) |
| 66 | 62 65 | eqtri | ⊢ ( ( 1 / 2 ) · π ) = ( π / 2 ) |
| 67 | 49 57 66 | 3eqtri | ⊢ ( 𝐼 ‘ 2 ) = ( π / 2 ) |
| 68 | 3z | ⊢ 3 ∈ ℤ | |
| 69 | 2re | ⊢ 2 ∈ ℝ | |
| 70 | 3re | ⊢ 3 ∈ ℝ | |
| 71 | 2lt3 | ⊢ 2 < 3 | |
| 72 | 69 70 71 | ltleii | ⊢ 2 ≤ 3 |
| 73 | eluz2 | ⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3 ) ) | |
| 74 | 44 68 72 73 | mpbir3an | ⊢ 3 ∈ ( ℤ≥ ‘ 2 ) |
| 75 | 2 | wallispilem2 | ⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 3 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) ) ) |
| 76 | 75 | simp3i | ⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) ) |
| 77 | 74 76 | ax-mp | ⊢ ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) |
| 78 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 79 | 78 | eqcomi | ⊢ 2 = ( 3 − 1 ) |
| 80 | 79 | oveq1i | ⊢ ( 2 / 3 ) = ( ( 3 − 1 ) / 3 ) |
| 81 | 3cn | ⊢ 3 ∈ ℂ | |
| 82 | 81 52 58 40 | subaddrii | ⊢ ( 3 − 2 ) = 1 |
| 83 | 82 | fveq2i | ⊢ ( 𝐼 ‘ ( 3 − 2 ) ) = ( 𝐼 ‘ 1 ) |
| 84 | 47 | simp2i | ⊢ ( 𝐼 ‘ 1 ) = 2 |
| 85 | 83 84 | eqtr2i | ⊢ 2 = ( 𝐼 ‘ ( 3 − 2 ) ) |
| 86 | 80 85 | oveq12i | ⊢ ( ( 2 / 3 ) · 2 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) |
| 87 | 3ne0 | ⊢ 3 ≠ 0 | |
| 88 | 52 81 87 | divcli | ⊢ ( 2 / 3 ) ∈ ℂ |
| 89 | 88 52 | mulcomi | ⊢ ( ( 2 / 3 ) · 2 ) = ( 2 · ( 2 / 3 ) ) |
| 90 | 77 86 89 | 3eqtr2i | ⊢ ( 𝐼 ‘ 3 ) = ( 2 · ( 2 / 3 ) ) |
| 91 | 67 90 | oveq12i | ⊢ ( ( 𝐼 ‘ 2 ) / ( 𝐼 ‘ 3 ) ) = ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) |
| 92 | 1z | ⊢ 1 ∈ ℤ | |
| 93 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) | |
| 94 | 92 93 | ax-mp | ⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
| 95 | 1nn | ⊢ 1 ∈ ℕ | |
| 96 | oveq2 | ⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = ( 2 · 1 ) ) | |
| 97 | 96 37 | eqtrdi | ⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = 2 ) |
| 98 | 96 | oveq1d | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 1 ) − 1 ) ) |
| 99 | 37 | oveq1i | ⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
| 100 | 99 50 | eqtri | ⊢ ( ( 2 · 1 ) − 1 ) = 1 |
| 101 | 98 100 | eqtrdi | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = 1 ) |
| 102 | 97 101 | oveq12d | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( 2 / 1 ) ) |
| 103 | 52 | div1i | ⊢ ( 2 / 1 ) = 2 |
| 104 | 102 103 | eqtrdi | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = 2 ) |
| 105 | 97 | oveq1d | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) + 1 ) = ( 2 + 1 ) ) |
| 106 | 105 40 | eqtrdi | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) + 1 ) = 3 ) |
| 107 | 97 106 | oveq12d | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( 2 / 3 ) ) |
| 108 | 104 107 | oveq12d | ⊢ ( 𝑘 = 1 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2 · ( 2 / 3 ) ) ) |
| 109 | ovex | ⊢ ( 2 · ( 2 / 3 ) ) ∈ V | |
| 110 | 108 1 109 | fvmpt | ⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) = ( 2 · ( 2 / 3 ) ) ) |
| 111 | 95 110 | ax-mp | ⊢ ( 𝐹 ‘ 1 ) = ( 2 · ( 2 / 3 ) ) |
| 112 | 94 111 | eqtr2i | ⊢ ( 2 · ( 2 / 3 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) |
| 113 | 112 | oveq2i | ⊢ ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) = ( ( π / 2 ) / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) |
| 114 | 52 88 | mulcli | ⊢ ( 2 · ( 2 / 3 ) ) ∈ ℂ |
| 115 | 111 114 | eqeltri | ⊢ ( 𝐹 ‘ 1 ) ∈ ℂ |
| 116 | 94 115 | eqeltri | ⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) ∈ ℂ |
| 117 | 52 81 63 87 | divne0i | ⊢ ( 2 / 3 ) ≠ 0 |
| 118 | 52 88 63 117 | mulne0i | ⊢ ( 2 · ( 2 / 3 ) ) ≠ 0 |
| 119 | 112 118 | eqnetrri | ⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) ≠ 0 |
| 120 | 64 116 119 | divreci | ⊢ ( ( π / 2 ) / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 121 | 113 120 | eqtri | ⊢ ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 122 | 43 91 121 | 3eqtri | ⊢ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 123 | oveq2 | ⊢ ( ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) | |
| 124 | 123 | adantl | ⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 125 | 2cnd | ⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℂ ) | |
| 126 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 127 | 58 | a1i | ⊢ ( 𝑦 ∈ ℕ → 1 ∈ ℂ ) |
| 128 | 125 126 127 | adddid | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) = ( ( 2 · 𝑦 ) + ( 2 · 1 ) ) ) |
| 129 | 125 | mulridd | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 1 ) = 2 ) |
| 130 | 129 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
| 131 | 128 130 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
| 132 | 131 | oveq1d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) = ( ( ( 2 · 𝑦 ) + 2 ) − 1 ) ) |
| 133 | 125 126 | mulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℂ ) |
| 134 | 133 125 127 | addsubassd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) − 1 ) = ( ( 2 · 𝑦 ) + ( 2 − 1 ) ) ) |
| 135 | 50 | a1i | ⊢ ( 𝑦 ∈ ℕ → ( 2 − 1 ) = 1 ) |
| 136 | 135 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 137 | 132 134 136 | 3eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 138 | 137 | oveq1d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ) |
| 139 | 138 | oveq1d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
| 140 | 78 | a1i | ⊢ ( 𝑦 ∈ ℕ → ( 3 − 1 ) = 2 ) |
| 141 | 140 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 3 − 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
| 142 | 81 | a1i | ⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℂ ) |
| 143 | 133 142 127 | addsubassd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) = ( ( 2 · 𝑦 ) + ( 3 − 1 ) ) ) |
| 144 | 141 143 131 | 3eqtr4d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) = ( 2 · ( 𝑦 + 1 ) ) ) |
| 145 | 144 | oveq1d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 146 | 145 | oveq1d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
| 147 | 139 146 | oveq12d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 148 | 44 | a1i | ⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℤ ) |
| 149 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 150 | 149 | peano2zd | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℤ ) |
| 151 | 148 150 | zmulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℤ ) |
| 152 | 69 | a1i | ⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℝ ) |
| 153 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 154 | 1red | ⊢ ( 𝑦 ∈ ℕ → 1 ∈ ℝ ) | |
| 155 | 153 154 | readdcld | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℝ ) |
| 156 | 0le2 | ⊢ 0 ≤ 2 | |
| 157 | 156 | a1i | ⊢ ( 𝑦 ∈ ℕ → 0 ≤ 2 ) |
| 158 | nnnn0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) | |
| 159 | 158 | nn0ge0d | ⊢ ( 𝑦 ∈ ℕ → 0 ≤ 𝑦 ) |
| 160 | 154 153 | addge02d | ⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ 𝑦 ↔ 1 ≤ ( 𝑦 + 1 ) ) ) |
| 161 | 159 160 | mpbid | ⊢ ( 𝑦 ∈ ℕ → 1 ≤ ( 𝑦 + 1 ) ) |
| 162 | 152 155 157 161 | lemulge11d | ⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( 2 · ( 𝑦 + 1 ) ) ) |
| 163 | 44 | eluz1i | ⊢ ( ( 2 · ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 · ( 𝑦 + 1 ) ) ∈ ℤ ∧ 2 ≤ ( 2 · ( 𝑦 + 1 ) ) ) ) |
| 164 | 151 162 163 | sylanbrc | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 165 | 2 164 | itgsinexp | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) ) ) |
| 166 | 131 | oveq1d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) = ( ( ( 2 · 𝑦 ) + 2 ) − 2 ) ) |
| 167 | 133 125 | pncand | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) − 2 ) = ( 2 · 𝑦 ) ) |
| 168 | 166 167 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) = ( 2 · 𝑦 ) ) |
| 169 | 168 | fveq2d | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) = ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) |
| 170 | 169 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
| 171 | 165 170 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
| 172 | 131 | oveq1d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) = ( ( ( 2 · 𝑦 ) + 2 ) + 1 ) ) |
| 173 | 133 125 127 | addassd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) + 1 ) = ( ( 2 · 𝑦 ) + ( 2 + 1 ) ) ) |
| 174 | 40 | a1i | ⊢ ( 𝑦 ∈ ℕ → ( 2 + 1 ) = 3 ) |
| 175 | 174 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 + 1 ) ) = ( ( 2 · 𝑦 ) + 3 ) ) |
| 176 | 172 173 175 | 3eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) = ( ( 2 · 𝑦 ) + 3 ) ) |
| 177 | 176 | fveq2d | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 178 | 148 149 | zmulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℤ ) |
| 179 | 68 | a1i | ⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℤ ) |
| 180 | 178 179 | zaddcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℤ ) |
| 181 | 152 153 | remulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℝ ) |
| 182 | 70 | a1i | ⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℝ ) |
| 183 | 181 182 | readdcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℝ ) |
| 184 | nnge1 | ⊢ ( 𝑦 ∈ ℕ → 1 ≤ 𝑦 ) | |
| 185 | 152 153 157 184 | lemulge11d | ⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( 2 · 𝑦 ) ) |
| 186 | 0re | ⊢ 0 ∈ ℝ | |
| 187 | 3pos | ⊢ 0 < 3 | |
| 188 | 186 70 187 | ltleii | ⊢ 0 ≤ 3 |
| 189 | 181 182 | addge01d | ⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ 3 ↔ ( 2 · 𝑦 ) ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 190 | 188 189 | mpbii | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ≤ ( ( 2 · 𝑦 ) + 3 ) ) |
| 191 | 152 181 183 185 190 | letrd | ⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) |
| 192 | 44 | eluz1i | ⊢ ( ( ( 2 · 𝑦 ) + 3 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 2 · 𝑦 ) + 3 ) ∈ ℤ ∧ 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 193 | 180 191 192 | sylanbrc | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 194 | 2 193 | itgsinexp | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 3 ) ) = ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
| 195 | 177 194 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
| 196 | 171 195 | oveq12d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 197 | 133 127 | addcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ∈ ℂ ) |
| 198 | 126 127 | addcld | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℂ ) |
| 199 | 125 198 | mulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℂ ) |
| 200 | 63 | a1i | ⊢ ( 𝑦 ∈ ℕ → 2 ≠ 0 ) |
| 201 | peano2nn | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) | |
| 202 | 201 | nnne0d | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ≠ 0 ) |
| 203 | 125 198 200 202 | mulne0d | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ≠ 0 ) |
| 204 | 197 199 203 | divcld | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
| 205 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 206 | 205 | a1i | ⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℕ0 ) |
| 207 | 206 158 | nn0mulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℕ0 ) |
| 208 | 2 | wallispilem3 | ⊢ ( ( 2 · 𝑦 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℝ+ ) |
| 209 | 208 | rpcnd | ⊢ ( ( 2 · 𝑦 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) |
| 210 | 207 209 | syl | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) |
| 211 | 133 142 | addcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℂ ) |
| 212 | 0red | ⊢ ( 𝑦 ∈ ℕ → 0 ∈ ℝ ) | |
| 213 | 2pos | ⊢ 0 < 2 | |
| 214 | 213 | a1i | ⊢ ( 𝑦 ∈ ℕ → 0 < 2 ) |
| 215 | nngt0 | ⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) | |
| 216 | 152 153 214 215 | mulgt0d | ⊢ ( 𝑦 ∈ ℕ → 0 < ( 2 · 𝑦 ) ) |
| 217 | 182 187 | jctir | ⊢ ( 𝑦 ∈ ℕ → ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
| 218 | elrp | ⊢ ( 3 ∈ ℝ+ ↔ ( 3 ∈ ℝ ∧ 0 < 3 ) ) | |
| 219 | 217 218 | sylibr | ⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℝ+ ) |
| 220 | 181 219 | ltaddrpd | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) < ( ( 2 · 𝑦 ) + 3 ) ) |
| 221 | 212 181 183 216 220 | lttrd | ⊢ ( 𝑦 ∈ ℕ → 0 < ( ( 2 · 𝑦 ) + 3 ) ) |
| 222 | 221 | gt0ne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ≠ 0 ) |
| 223 | 199 211 222 | divcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ) |
| 224 | 199 211 203 222 | divne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) |
| 225 | 180 148 | zsubcld | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℤ ) |
| 226 | 183 152 | subge0d | ⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ↔ 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 227 | 191 226 | mpbird | ⊢ ( 𝑦 ∈ ℕ → 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) |
| 228 | elnn0z | ⊢ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 ↔ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) | |
| 229 | 225 227 228 | sylanbrc | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 ) |
| 230 | 2 | wallispilem3 | ⊢ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℝ+ ) |
| 231 | 229 230 | syl | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℝ+ ) |
| 232 | 231 | rpcnne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) |
| 233 | 223 224 232 | jca31 | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ∧ ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) ∧ ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) ) |
| 234 | divmuldiv | ⊢ ( ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) ∧ ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ∧ ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) ∧ ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) | |
| 235 | 204 210 233 234 | syl21anc | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 236 | 147 196 235 | 3eqtr4d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 237 | 133 142 125 | addsubassd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) = ( ( 2 · 𝑦 ) + ( 3 − 2 ) ) ) |
| 238 | 82 | a1i | ⊢ ( 𝑦 ∈ ℕ → ( 3 − 2 ) = 1 ) |
| 239 | 238 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 3 − 2 ) ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 240 | 237 239 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 241 | 240 | fveq2d | ⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) |
| 242 | 241 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) |
| 243 | 242 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
| 244 | 236 243 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
| 245 | 244 | adantr | ⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
| 246 | elnnuz | ⊢ ( 𝑦 ∈ ℕ ↔ 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 247 | 246 | biimpi | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
| 248 | seqp1 | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) | |
| 249 | 247 248 | syl | ⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) |
| 250 | oveq2 | ⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( 2 · 𝑘 ) = ( 2 · ( 𝑦 + 1 ) ) ) | |
| 251 | 250 | oveq1d | ⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) |
| 252 | 250 251 | oveq12d | ⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 253 | 250 | oveq1d | ⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) |
| 254 | 250 253 | oveq12d | ⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) |
| 255 | 252 254 | oveq12d | ⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
| 256 | 152 155 | remulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℝ ) |
| 257 | 256 154 | resubcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ∈ ℝ ) |
| 258 | 1lt2 | ⊢ 1 < 2 | |
| 259 | 258 | a1i | ⊢ ( 𝑦 ∈ ℕ → 1 < 2 ) |
| 260 | nnrp | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) | |
| 261 | 154 260 | ltaddrp2d | ⊢ ( 𝑦 ∈ ℕ → 1 < ( 𝑦 + 1 ) ) |
| 262 | 152 155 259 261 | mulgt1d | ⊢ ( 𝑦 ∈ ℕ → 1 < ( 2 · ( 𝑦 + 1 ) ) ) |
| 263 | 154 262 | gtned | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ≠ 1 ) |
| 264 | 199 127 263 | subne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ≠ 0 ) |
| 265 | 256 257 264 | redivcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) ∈ ℝ ) |
| 266 | 176 183 | eqeltrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ∈ ℝ ) |
| 267 | 176 222 | eqnetrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ≠ 0 ) |
| 268 | 256 266 267 | redivcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ∈ ℝ ) |
| 269 | 265 268 | remulcld | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ∈ ℝ ) |
| 270 | 1 255 201 269 | fvmptd3 | ⊢ ( 𝑦 ∈ ℕ → ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
| 271 | 270 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) |
| 272 | 249 271 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) |
| 273 | 272 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) |
| 274 | 273 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) ) |
| 275 | 137 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) ) |
| 276 | 176 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 277 | 275 276 | oveq12d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
| 278 | 277 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 279 | 278 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 280 | 279 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) = ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) ) |
| 281 | elfznn | ⊢ ( 𝑤 ∈ ( 1 ... 𝑦 ) → 𝑤 ∈ ℕ ) | |
| 282 | 281 | adantl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ( 1 ... 𝑦 ) ) → 𝑤 ∈ ℕ ) |
| 283 | oveq2 | ⊢ ( 𝑘 = 𝑤 → ( 2 · 𝑘 ) = ( 2 · 𝑤 ) ) | |
| 284 | 283 | oveq1d | ⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑤 ) − 1 ) ) |
| 285 | 283 284 | oveq12d | ⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) ) |
| 286 | 283 | oveq1d | ⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑤 ) + 1 ) ) |
| 287 | 283 286 | oveq12d | ⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) |
| 288 | 285 287 | oveq12d | ⊢ ( 𝑘 = 𝑤 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ) |
| 289 | id | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℕ ) | |
| 290 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 291 | 290 | a1i | ⊢ ( 𝑤 ∈ ℕ → 2 ∈ ℝ+ ) |
| 292 | nnrp | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℝ+ ) | |
| 293 | 291 292 | rpmulcld | ⊢ ( 𝑤 ∈ ℕ → ( 2 · 𝑤 ) ∈ ℝ+ ) |
| 294 | 69 | a1i | ⊢ ( 𝑤 ∈ ℕ → 2 ∈ ℝ ) |
| 295 | nnre | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℝ ) | |
| 296 | 294 295 | remulcld | ⊢ ( 𝑤 ∈ ℕ → ( 2 · 𝑤 ) ∈ ℝ ) |
| 297 | 1red | ⊢ ( 𝑤 ∈ ℕ → 1 ∈ ℝ ) | |
| 298 | 296 297 | resubcld | ⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) − 1 ) ∈ ℝ ) |
| 299 | nnge1 | ⊢ ( 𝑤 ∈ ℕ → 1 ≤ 𝑤 ) | |
| 300 | nncn | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) | |
| 301 | 300 | mullidd | ⊢ ( 𝑤 ∈ ℕ → ( 1 · 𝑤 ) = 𝑤 ) |
| 302 | 297 294 292 | ltmul1d | ⊢ ( 𝑤 ∈ ℕ → ( 1 < 2 ↔ ( 1 · 𝑤 ) < ( 2 · 𝑤 ) ) ) |
| 303 | 258 302 | mpbii | ⊢ ( 𝑤 ∈ ℕ → ( 1 · 𝑤 ) < ( 2 · 𝑤 ) ) |
| 304 | 301 303 | eqbrtrrd | ⊢ ( 𝑤 ∈ ℕ → 𝑤 < ( 2 · 𝑤 ) ) |
| 305 | 297 295 296 299 304 | lelttrd | ⊢ ( 𝑤 ∈ ℕ → 1 < ( 2 · 𝑤 ) ) |
| 306 | 297 296 | posdifd | ⊢ ( 𝑤 ∈ ℕ → ( 1 < ( 2 · 𝑤 ) ↔ 0 < ( ( 2 · 𝑤 ) − 1 ) ) ) |
| 307 | 305 306 | mpbid | ⊢ ( 𝑤 ∈ ℕ → 0 < ( ( 2 · 𝑤 ) − 1 ) ) |
| 308 | 298 307 | elrpd | ⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) − 1 ) ∈ ℝ+ ) |
| 309 | 293 308 | rpdivcld | ⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) ∈ ℝ+ ) |
| 310 | 156 | a1i | ⊢ ( 𝑤 ∈ ℕ → 0 ≤ 2 ) |
| 311 | 292 | rpge0d | ⊢ ( 𝑤 ∈ ℕ → 0 ≤ 𝑤 ) |
| 312 | 294 295 310 311 | mulge0d | ⊢ ( 𝑤 ∈ ℕ → 0 ≤ ( 2 · 𝑤 ) ) |
| 313 | 296 312 | ge0p1rpd | ⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) + 1 ) ∈ ℝ+ ) |
| 314 | 293 313 | rpdivcld | ⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ∈ ℝ+ ) |
| 315 | 309 314 | rpmulcld | ⊢ ( 𝑤 ∈ ℕ → ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ∈ ℝ+ ) |
| 316 | 1 288 289 315 | fvmptd3 | ⊢ ( 𝑤 ∈ ℕ → ( 𝐹 ‘ 𝑤 ) = ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ) |
| 317 | 316 315 | eqeltrd | ⊢ ( 𝑤 ∈ ℕ → ( 𝐹 ‘ 𝑤 ) ∈ ℝ+ ) |
| 318 | 282 317 | syl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ( 1 ... 𝑦 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ+ ) |
| 319 | rpmulcl | ⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( 𝑤 · 𝑧 ) ∈ ℝ+ ) | |
| 320 | 319 | adantl | ⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑤 · 𝑧 ) ∈ ℝ+ ) |
| 321 | 247 318 320 | seqcl | ⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℝ+ ) |
| 322 | 321 | rpcnne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) ) |
| 323 | 290 | a1i | ⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℝ+ ) |
| 324 | 153 159 | ge0p1rpd | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℝ+ ) |
| 325 | 323 324 | rpmulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℝ+ ) |
| 326 | 152 153 157 159 | mulge0d | ⊢ ( 𝑦 ∈ ℕ → 0 ≤ ( 2 · 𝑦 ) ) |
| 327 | 181 326 | ge0p1rpd | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ∈ ℝ+ ) |
| 328 | 325 327 | rpdivcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) ∈ ℝ+ ) |
| 329 | 323 260 | rpmulcld | ⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℝ+ ) |
| 330 | 329 219 | rpaddcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℝ+ ) |
| 331 | 325 330 | rpdivcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℝ+ ) |
| 332 | 328 331 | rpmulcld | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℝ+ ) |
| 333 | 332 | rpcnne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ∧ ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) ) |
| 334 | divdiv1 | ⊢ ( ( 1 ∈ ℂ ∧ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) ∧ ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ∧ ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) ) → ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) | |
| 335 | 127 322 333 334 | syl3anc | ⊢ ( 𝑦 ∈ ℕ → ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 336 | 335 | eqcomd | ⊢ ( 𝑦 ∈ ℕ → ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) = ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 337 | 336 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) = ( ( π / 2 ) · ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 338 | 64 | a1i | ⊢ ( 𝑦 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
| 339 | 321 | rpcnd | ⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
| 340 | 321 | rpne0d | ⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) |
| 341 | 339 340 | reccld | ⊢ ( 𝑦 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 342 | 332 | rpcnd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ) |
| 343 | 332 | rpne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) |
| 344 | 338 341 342 343 | divassd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( π / 2 ) · ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 345 | 137 264 | eqnetrrd | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ≠ 0 ) |
| 346 | 199 197 199 211 345 222 | divmuldivd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
| 347 | 346 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 348 | 338 341 | mulcld | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 349 | 199 199 | mulcld | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
| 350 | 197 211 | mulcld | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ) |
| 351 | 199 199 203 203 | mulne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ≠ 0 ) |
| 352 | 197 211 345 222 | mulne0d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) |
| 353 | 348 349 350 351 352 | divdiv2d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) |
| 354 | 348 350 349 351 | divassd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) ) |
| 355 | 353 354 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) ) |
| 356 | 197 199 199 211 203 222 203 | divdivdivd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) |
| 357 | 356 | eqcomd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
| 358 | 357 | oveq2d | ⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 359 | 347 355 358 | 3eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 360 | 337 344 359 | 3eqtr2d | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 361 | 60 | a1i | ⊢ ( 𝑦 ∈ ℕ → π ∈ ℂ ) |
| 362 | 361 | halfcld | ⊢ ( 𝑦 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
| 363 | 362 341 | mulcld | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 364 | 204 223 224 | divcld | ⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ) |
| 365 | 363 364 | mulcomd | ⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 366 | 280 360 365 | 3eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 367 | 274 366 | eqtrd | ⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 368 | 367 | adantr | ⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 369 | 124 245 368 | 3eqtr4d | ⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 370 | 369 | ex | ⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) ) |
| 371 | 12 20 28 36 122 370 | nnind | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 372 | 371 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 373 | 372 3 4 | 3eqtr4i | ⊢ 𝐺 = 𝐻 |