This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A first set of properties for the sequence I that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wallispilem2.1 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| Assertion | wallispilem2 | ⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem2.1 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| 2 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 3 | oveq2 | ⊢ ( 𝑛 = 0 → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 0 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 0 ) ) |
| 5 | ioosscn | ⊢ ( 0 (,) π ) ⊆ ℂ | |
| 6 | 5 | sseli | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℂ ) |
| 7 | 6 | sincld | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 9 | 8 | exp0d | ⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 0 ) = 1 ) |
| 10 | 4 9 | eqtrd | ⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = 1 ) |
| 11 | 10 | itgeq2dv | ⊢ ( 𝑛 = 0 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) 1 d 𝑥 ) |
| 12 | ioombl | ⊢ ( 0 (,) π ) ∈ dom vol | |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | pire | ⊢ π ∈ ℝ | |
| 15 | ioovolcl | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( vol ‘ ( 0 (,) π ) ) ∈ ℝ ) | |
| 16 | 13 14 15 | mp2an | ⊢ ( vol ‘ ( 0 (,) π ) ) ∈ ℝ |
| 17 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 18 | itgconst | ⊢ ( ( ( 0 (,) π ) ∈ dom vol ∧ ( vol ‘ ( 0 (,) π ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) ) | |
| 19 | 12 16 17 18 | mp3an | ⊢ ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) |
| 20 | 16 | recni | ⊢ ( vol ‘ ( 0 (,) π ) ) ∈ ℂ |
| 21 | 20 | mullidi | ⊢ ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = ( vol ‘ ( 0 (,) π ) ) |
| 22 | pipos | ⊢ 0 < π | |
| 23 | 13 14 22 | ltleii | ⊢ 0 ≤ π |
| 24 | volioo | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π ) → ( vol ‘ ( 0 (,) π ) ) = ( π − 0 ) ) | |
| 25 | 13 14 23 24 | mp3an | ⊢ ( vol ‘ ( 0 (,) π ) ) = ( π − 0 ) |
| 26 | 14 | recni | ⊢ π ∈ ℂ |
| 27 | 26 | subid1i | ⊢ ( π − 0 ) = π |
| 28 | 25 27 | eqtri | ⊢ ( vol ‘ ( 0 (,) π ) ) = π |
| 29 | 21 28 | eqtri | ⊢ ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = π |
| 30 | 19 29 | eqtri | ⊢ ∫ ( 0 (,) π ) 1 d 𝑥 = π |
| 31 | 11 30 | eqtrdi | ⊢ ( 𝑛 = 0 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = π ) |
| 32 | 14 | elexi | ⊢ π ∈ V |
| 33 | 31 1 32 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( 𝐼 ‘ 0 ) = π ) |
| 34 | 2 33 | ax-mp | ⊢ ( 𝐼 ‘ 0 ) = π |
| 35 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 36 | simpl | ⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑛 = 1 ) | |
| 37 | 36 | oveq2d | ⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 1 ) ) |
| 38 | 7 | adantl | ⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 39 | 38 | exp1d | ⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 1 ) = ( sin ‘ 𝑥 ) ) |
| 40 | 37 39 | eqtrd | ⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( sin ‘ 𝑥 ) ) |
| 41 | 40 | itgeq2dv | ⊢ ( 𝑛 = 1 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ) |
| 42 | itgex | ⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ∈ V | |
| 43 | 41 1 42 | fvmpt | ⊢ ( 1 ∈ ℕ0 → ( 𝐼 ‘ 1 ) = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ) |
| 44 | 35 43 | ax-mp | ⊢ ( 𝐼 ‘ 1 ) = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 |
| 45 | itgsin0pi | ⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = 2 | |
| 46 | 44 45 | eqtri | ⊢ ( 𝐼 ‘ 1 ) = 2 |
| 47 | id | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 48 | 1 47 | itgsinexp | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) ) |
| 49 | 34 46 48 | 3pm3.2i | ⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) ) ) |