This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence H converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wallispilem5.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| wallispilem5.2 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | ||
| wallispilem5.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) | ||
| wallispilem5.4 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) | ||
| wallispilem5.5 | ⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) | ||
| Assertion | wallispilem5 | ⊢ 𝐻 ⇝ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem5.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| 2 | wallispilem5.2 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| 3 | wallispilem5.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 4 | wallispilem5.4 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) | |
| 5 | wallispilem5.5 | ⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) | |
| 6 | 1 2 3 4 | wallispilem4 | ⊢ 𝐺 = 𝐻 |
| 7 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 8 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 9 | 2cnd | ⊢ ( ⊤ → 2 ∈ ℂ ) | |
| 10 | 2ne0 | ⊢ 2 ≠ 0 | |
| 11 | 10 | a1i | ⊢ ( ⊤ → 2 ≠ 0 ) |
| 12 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 13 | 5 9 11 12 | clim1fr1 | ⊢ ( ⊤ → 𝐿 ⇝ 1 ) |
| 14 | nnex | ⊢ ℕ ∈ V | |
| 15 | 14 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ V |
| 16 | 3 15 | eqeltri | ⊢ 𝐺 ∈ V |
| 17 | 16 | a1i | ⊢ ( ⊤ → 𝐺 ∈ V ) |
| 18 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 19 | 18 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ0 ) |
| 20 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 21 | 19 20 | nn0mulcld | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 22 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 23 | 22 | a1i | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℕ0 ) |
| 24 | 21 23 | nn0addcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) |
| 25 | 24 | nn0red | ⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
| 26 | 21 | nn0red | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 27 | 2cnd | ⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) | |
| 28 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 29 | 10 | a1i | ⊢ ( 𝑛 ∈ ℕ → 2 ≠ 0 ) |
| 30 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 31 | 27 28 29 30 | mulne0d | ⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ≠ 0 ) |
| 32 | 25 26 31 | redivcld | ⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ∈ ℝ ) |
| 33 | 5 32 | fmpti | ⊢ 𝐿 : ℕ ⟶ ℝ |
| 34 | 33 | a1i | ⊢ ( ⊤ → 𝐿 : ℕ ⟶ ℝ ) |
| 35 | 34 | ffvelcdmda | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐿 ‘ 𝑘 ) ∈ ℝ ) |
| 36 | 2 | wallispilem3 | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 37 | 21 36 | syl | ⊢ ( 𝑛 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 38 | 37 | rpred | ⊢ ( 𝑛 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑛 ) ) ∈ ℝ ) |
| 39 | 2 | wallispilem3 | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ+ ) |
| 40 | 24 39 | syl | ⊢ ( 𝑛 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ+ ) |
| 41 | 38 40 | rerpdivcld | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℝ ) |
| 42 | 3 41 | fmpti | ⊢ 𝐺 : ℕ ⟶ ℝ |
| 43 | 42 | a1i | ⊢ ( ⊤ → 𝐺 : ℕ ⟶ ℝ ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 45 | 18 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℕ0 ) |
| 46 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 47 | 45 46 | nn0mulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℕ0 ) |
| 48 | 2 | wallispilem3 | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ∈ ℝ+ ) |
| 49 | 47 48 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ∈ ℝ+ ) |
| 50 | 49 | rpred | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ∈ ℝ ) |
| 51 | 2nn | ⊢ 2 ∈ ℕ | |
| 52 | 51 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℕ ) |
| 53 | id | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) | |
| 54 | 52 53 | nnmulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℕ ) |
| 55 | nnm1nn0 | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ0 ) | |
| 56 | 54 55 | syl | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ0 ) |
| 57 | 2 | wallispilem3 | ⊢ ( ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℝ+ ) |
| 58 | 56 57 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℝ+ ) |
| 59 | 58 | rpred | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℝ ) |
| 60 | 22 | a1i | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℕ0 ) |
| 61 | 47 60 | nn0addcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
| 62 | 2 | wallispilem3 | ⊢ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
| 63 | 61 62 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
| 64 | 2cnd | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) | |
| 65 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 66 | 64 65 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 67 | 1cnd | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) | |
| 68 | 66 67 | npcand | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
| 69 | 68 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) = ( 𝐼 ‘ ( 2 · 𝑘 ) ) ) |
| 70 | 2 56 | wallispilem1 | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) ≤ ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 71 | 69 70 | eqbrtrrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ≤ ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 72 | 50 59 63 71 | lediv1dd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ≤ ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 73 | 66 67 | addcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 74 | 10 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
| 75 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 76 | 64 65 74 75 | mulne0d | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≠ 0 ) |
| 77 | 73 66 76 | divcld | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ∈ ℂ ) |
| 78 | 63 | rpcnd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 79 | 63 | rpne0d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ≠ 0 ) |
| 80 | 77 78 79 | divcan4d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
| 81 | 2re | ⊢ 2 ∈ ℝ | |
| 82 | 81 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
| 83 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 84 | 82 83 | remulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
| 85 | 1red | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) | |
| 86 | 84 85 | readdcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
| 87 | 45 | nn0ge0d | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ 2 ) |
| 88 | nnge1 | ⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) | |
| 89 | 82 83 87 88 | lemulge11d | ⊢ ( 𝑘 ∈ ℕ → 2 ≤ ( 2 · 𝑘 ) ) |
| 90 | 84 | ltp1d | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) < ( ( 2 · 𝑘 ) + 1 ) ) |
| 91 | 82 84 86 89 90 | lelttrd | ⊢ ( 𝑘 ∈ ℕ → 2 < ( ( 2 · 𝑘 ) + 1 ) ) |
| 92 | 82 86 91 | ltled | ⊢ ( 𝑘 ∈ ℕ → 2 ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 93 | 45 | nn0zd | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℤ ) |
| 94 | 61 | nn0zd | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℤ ) |
| 95 | eluz | ⊢ ( ( 2 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℤ ) → ( ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ 2 ≤ ( ( 2 · 𝑘 ) + 1 ) ) ) | |
| 96 | 93 94 95 | syl2anc | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ 2 ≤ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 97 | 92 96 | mpbird | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 98 | 2 97 | itgsinexp | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) ) ) |
| 99 | 66 67 | pncand | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
| 100 | 99 | oveq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 101 | 1e2m1 | ⊢ 1 = ( 2 − 1 ) | |
| 102 | 101 | a1i | ⊢ ( 𝑘 ∈ ℕ → 1 = ( 2 − 1 ) ) |
| 103 | 102 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑘 ) − ( 2 − 1 ) ) ) |
| 104 | 66 64 67 | subsub3d | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − ( 2 − 1 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) |
| 105 | 103 104 | eqtr2d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 106 | 105 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 107 | 100 106 | oveq12d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) ) = ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
| 108 | 98 107 | eqtrd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
| 109 | 108 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) |
| 110 | 54 | peano2nnd | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 111 | 110 | nnne0d | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
| 112 | 66 73 111 | divcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 113 | 58 | rpcnd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℂ ) |
| 114 | 77 112 113 | mulassd | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) |
| 115 | 73 66 111 76 | divcan6d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = 1 ) |
| 116 | 115 | oveq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 1 · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
| 117 | 113 | mullidd | ⊢ ( 𝑘 ∈ ℕ → ( 1 · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 118 | 116 117 | eqtrd | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 119 | 109 114 118 | 3eqtr2d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 120 | 119 | oveq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 121 | 80 120 | eqtr3d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) = ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 122 | 72 121 | breqtrrd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ≤ ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
| 123 | 49 63 | rpdivcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℝ+ ) |
| 124 | nfcv | ⊢ Ⅎ 𝑛 𝑘 | |
| 125 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| 126 | 2 125 | nfcxfr | ⊢ Ⅎ 𝑛 𝐼 |
| 127 | nfcv | ⊢ Ⅎ 𝑛 ( 2 · 𝑘 ) | |
| 128 | 126 127 | nffv | ⊢ Ⅎ 𝑛 ( 𝐼 ‘ ( 2 · 𝑘 ) ) |
| 129 | nfcv | ⊢ Ⅎ 𝑛 / | |
| 130 | nfcv | ⊢ Ⅎ 𝑛 ( ( 2 · 𝑘 ) + 1 ) | |
| 131 | 126 130 | nffv | ⊢ Ⅎ 𝑛 ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) |
| 132 | 128 129 131 | nfov | ⊢ Ⅎ 𝑛 ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 133 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) | |
| 134 | 133 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝐼 ‘ ( 2 · 𝑛 ) ) = ( 𝐼 ‘ ( 2 · 𝑘 ) ) ) |
| 135 | 133 | fvoveq1d | ⊢ ( 𝑛 = 𝑘 → ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 136 | 134 135 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 137 | 124 132 136 3 | fvmptf | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℝ+ ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 138 | 123 137 | mpdan | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 139 | 5 | a1i | ⊢ ( 𝑘 ∈ ℕ → 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) ) |
| 140 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) | |
| 141 | 140 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 142 | 141 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 143 | 142 141 | oveq12d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
| 144 | 139 143 53 77 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( 𝐿 ‘ 𝑘 ) = ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
| 145 | 122 138 144 | 3brtr4d | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
| 146 | 145 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
| 147 | 78 79 | dividd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = 1 ) |
| 148 | 63 | rpred | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
| 149 | 2 47 | wallispilem1 | ⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 𝐼 ‘ ( 2 · 𝑘 ) ) ) |
| 150 | 148 50 63 149 | lediv1dd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ≤ ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 151 | 147 150 | eqbrtrrd | ⊢ ( 𝑘 ∈ ℕ → 1 ≤ ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 152 | 151 138 | breqtrrd | ⊢ ( 𝑘 ∈ ℕ → 1 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 153 | 152 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 154 | 7 8 13 17 35 44 146 153 | climsqz2 | ⊢ ( ⊤ → 𝐺 ⇝ 1 ) |
| 155 | 154 | mptru | ⊢ 𝐺 ⇝ 1 |
| 156 | 6 155 | eqbrtrri | ⊢ 𝐻 ⇝ 1 |