This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division into a fraction. (Contributed by NM, 31-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdiv1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 3 | 1 2 | pm3.2i | ⊢ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) |
| 4 | divdivdiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 1 ) ) = ( ( 𝐴 · 1 ) / ( 𝐵 · 𝐶 ) ) ) | |
| 5 | 3 4 | mpanr2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 1 ) ) = ( ( 𝐴 · 1 ) / ( 𝐵 · 𝐶 ) ) ) |
| 6 | 5 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 1 ) ) = ( ( 𝐴 · 1 ) / ( 𝐵 · 𝐶 ) ) ) |
| 7 | div1 | ⊢ ( 𝐶 ∈ ℂ → ( 𝐶 / 1 ) = 𝐶 ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐶 ∈ ℂ → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 1 ) ) = ( ( 𝐴 / 𝐵 ) / 𝐶 ) ) |
| 9 | 8 | ad2antrl | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 1 ) ) = ( ( 𝐴 / 𝐵 ) / 𝐶 ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 1 ) ) = ( ( 𝐴 / 𝐵 ) / 𝐶 ) ) |
| 11 | mulrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 1 ) / ( 𝐵 · 𝐶 ) ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 1 ) / ( 𝐵 · 𝐶 ) ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) |
| 14 | 6 10 13 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) |