This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: I maps to real values. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wallispilem3.1 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| Assertion | wallispilem3 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem3.1 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| 2 | breq2 | ⊢ ( 𝑤 = 0 → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 0 ) ) | |
| 3 | 2 | imbi1d | ⊢ ( 𝑤 = 0 → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 4 | 3 | ralbidv | ⊢ ( 𝑤 = 0 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 5 | breq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 𝑦 ) ) | |
| 6 | 5 | imbi1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 8 | breq2 | ⊢ ( 𝑤 = ( 𝑦 + 1 ) → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ ( 𝑦 + 1 ) ) ) | |
| 9 | 8 | imbi1d | ⊢ ( 𝑤 = ( 𝑦 + 1 ) → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑤 = ( 𝑦 + 1 ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 11 | breq2 | ⊢ ( 𝑤 = 𝑁 → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 𝑁 ) ) | |
| 12 | 11 | imbi1d | ⊢ ( 𝑤 = 𝑁 → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑤 = 𝑁 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 14 | simpr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 𝑚 ≤ 0 ) | |
| 15 | nn0ge0 | ⊢ ( 𝑚 ∈ ℕ0 → 0 ≤ 𝑚 ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 0 ≤ 𝑚 ) |
| 17 | nn0re | ⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 𝑚 ∈ ℝ ) |
| 19 | 0red | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 0 ∈ ℝ ) | |
| 20 | 18 19 | letri3d | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → ( 𝑚 = 0 ↔ ( 𝑚 ≤ 0 ∧ 0 ≤ 𝑚 ) ) ) |
| 21 | 14 16 20 | mpbir2and | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 𝑚 = 0 ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 0 ) ) |
| 23 | 1 | wallispilem2 | ⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑚 ) = ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ) ) |
| 24 | 23 | simp1i | ⊢ ( 𝐼 ‘ 0 ) = π |
| 25 | pirp | ⊢ π ∈ ℝ+ | |
| 26 | 24 25 | eqeltri | ⊢ ( 𝐼 ‘ 0 ) ∈ ℝ+ |
| 27 | 22 26 | eqeltrdi | ⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 28 | 27 | ex | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 29 | 28 | rgen | ⊢ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 30 | nfv | ⊢ Ⅎ 𝑚 𝑦 ∈ ℕ0 | |
| 31 | nfra1 | ⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) | |
| 32 | 30 31 | nfan | ⊢ Ⅎ 𝑚 ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 33 | simpllr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) | |
| 34 | simplr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ0 ) | |
| 35 | rsp | ⊢ ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) → ( 𝑚 ∈ ℕ0 → ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) | |
| 36 | 33 34 35 | sylc | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 37 | fveq2 | ⊢ ( 𝑚 = 1 → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 1 ) ) | |
| 38 | 23 | simp2i | ⊢ ( 𝐼 ‘ 1 ) = 2 |
| 39 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 40 | 38 39 | eqeltri | ⊢ ( 𝐼 ‘ 1 ) ∈ ℝ+ |
| 41 | 37 40 | eqeltrdi | ⊢ ( 𝑚 = 1 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 42 | 41 | a1i | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 = 1 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 43 | 23 | simp3i | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑚 ) = ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ) |
| 44 | 43 | adantl | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ 𝑚 ) = ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ) |
| 45 | eluz2nn | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 𝑚 ∈ ℕ ) | |
| 46 | nnre | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) | |
| 47 | 1red | ⊢ ( 𝑚 ∈ ℕ → 1 ∈ ℝ ) | |
| 48 | 46 47 | resubcld | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 − 1 ) ∈ ℝ ) |
| 49 | 45 48 | syl | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑚 − 1 ) ∈ ℝ ) |
| 50 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 51 | 1red | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) | |
| 52 | eluzelre | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 𝑚 ∈ ℝ ) | |
| 53 | eluz2b2 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑚 ∈ ℕ ∧ 1 < 𝑚 ) ) | |
| 54 | 53 | simprbi | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑚 ) |
| 55 | 51 52 51 54 | ltsub1dd | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 1 − 1 ) < ( 𝑚 − 1 ) ) |
| 56 | 50 55 | eqbrtrrid | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( 𝑚 − 1 ) ) |
| 57 | 49 56 | elrpd | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑚 − 1 ) ∈ ℝ+ ) |
| 58 | 45 | nnrpd | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 𝑚 ∈ ℝ+ ) |
| 59 | 57 58 | rpdivcld | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑚 − 1 ) / 𝑚 ) ∈ ℝ+ ) |
| 60 | 59 | adantl | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑚 − 1 ) / 𝑚 ) ∈ ℝ+ ) |
| 61 | breq1 | ⊢ ( 𝑚 = 𝑘 → ( 𝑚 ≤ 𝑦 ↔ 𝑘 ≤ 𝑦 ) ) | |
| 62 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 𝑘 ) ) | |
| 63 | 62 | eleq1d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ↔ ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 64 | 61 63 | imbi12d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) ) |
| 65 | 64 | cbvralvw | ⊢ ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 66 | 65 | biimpi | ⊢ ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) → ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 67 | 66 | ad3antlr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 68 | uznn0sub | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑚 − 2 ) ∈ ℕ0 ) | |
| 69 | 68 | adantl | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) ∈ ℕ0 ) |
| 70 | 67 69 | jca | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ∧ ( 𝑚 − 2 ) ∈ ℕ0 ) ) |
| 71 | simplll | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ℕ0 ) | |
| 72 | simplr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑚 = ( 𝑦 + 1 ) ) | |
| 73 | simpr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 74 | simp2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑚 = ( 𝑦 + 1 ) ) | |
| 75 | 74 | oveq1d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) = ( ( 𝑦 + 1 ) − 2 ) ) |
| 76 | nn0re | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) | |
| 77 | 76 | 3ad2ant1 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ℝ ) |
| 78 | 77 | recnd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ℂ ) |
| 79 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 80 | 79 | a1i | ⊢ ( 𝑦 ∈ ℂ → 2 = ( 1 + 1 ) ) |
| 81 | 80 | oveq2d | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) − 2 ) = ( ( 𝑦 + 1 ) − ( 1 + 1 ) ) ) |
| 82 | id | ⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) | |
| 83 | 1cnd | ⊢ ( 𝑦 ∈ ℂ → 1 ∈ ℂ ) | |
| 84 | 82 83 83 | pnpcan2d | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) − ( 1 + 1 ) ) = ( 𝑦 − 1 ) ) |
| 85 | 81 84 | eqtrd | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) − 2 ) = ( 𝑦 − 1 ) ) |
| 86 | 78 85 | syl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑦 + 1 ) − 2 ) = ( 𝑦 − 1 ) ) |
| 87 | 75 86 | eqtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) = ( 𝑦 − 1 ) ) |
| 88 | 77 | lem1d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑦 − 1 ) ≤ 𝑦 ) |
| 89 | 87 88 | eqbrtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) ≤ 𝑦 ) |
| 90 | 71 72 73 89 | syl3anc | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) ≤ 𝑦 ) |
| 91 | breq1 | ⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( 𝑘 ≤ 𝑦 ↔ ( 𝑚 − 2 ) ≤ 𝑦 ) ) | |
| 92 | fveq2 | ⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( 𝐼 ‘ 𝑘 ) = ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) | |
| 93 | 92 | eleq1d | ⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ↔ ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) ) |
| 94 | 91 93 | imbi12d | ⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ↔ ( ( 𝑚 − 2 ) ≤ 𝑦 → ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) ) ) |
| 95 | 94 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ∧ ( 𝑚 − 2 ) ∈ ℕ0 ) → ( ( 𝑚 − 2 ) ≤ 𝑦 → ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) ) |
| 96 | 70 90 95 | sylc | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) |
| 97 | 60 96 | rpmulcld | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ∈ ℝ+ ) |
| 98 | 44 97 | eqeltrd | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 99 | 98 | adantllr | ⊢ ( ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 100 | 99 | ex | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 101 | simplll | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) | |
| 102 | simplr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ0 ) | |
| 103 | simpr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 = ( 𝑦 + 1 ) ) | |
| 104 | simp3 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 = ( 𝑦 + 1 ) ) | |
| 105 | nn0p1nn | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ ) | |
| 106 | 105 | 3ad2ant1 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ℕ ) |
| 107 | 104 106 | eqeltrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ ) |
| 108 | elnnuz | ⊢ ( 𝑚 ∈ ℕ ↔ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 109 | 107 108 | sylib | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
| 110 | uzp1 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) ) | |
| 111 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 112 | 111 | fveq2i | ⊢ ( ℤ≥ ‘ ( 1 + 1 ) ) = ( ℤ≥ ‘ 2 ) |
| 113 | 112 | eleq2i | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ↔ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) |
| 114 | 113 | orbi2i | ⊢ ( ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) ↔ ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 115 | 110 114 | sylib | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 116 | 109 115 | syl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 117 | 101 102 103 116 | syl3anc | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 118 | 42 100 117 | mpjaod | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 119 | 118 | adantlr | ⊢ ( ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 120 | 119 | ex | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 = ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 121 | simplll | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) | |
| 122 | simpr | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ≤ ( 𝑦 + 1 ) ) | |
| 123 | simpl1 | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) | |
| 124 | simpl2 | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ0 ) | |
| 125 | simpr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 < ( 𝑦 + 1 ) ) | |
| 126 | simpr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = 0 ) → 𝑚 = 0 ) | |
| 127 | nn0ge0 | ⊢ ( 𝑦 ∈ ℕ0 → 0 ≤ 𝑦 ) | |
| 128 | 127 | adantr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = 0 ) → 0 ≤ 𝑦 ) |
| 129 | 126 128 | eqbrtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = 0 ) → 𝑚 ≤ 𝑦 ) |
| 130 | 129 | 3ad2antl1 | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 = 0 ) → 𝑚 ≤ 𝑦 ) |
| 131 | simpl1 | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑦 ∈ ℕ0 ) | |
| 132 | simpr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) | |
| 133 | simpl3 | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 < ( 𝑦 + 1 ) ) | |
| 134 | simp3 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 < ( 𝑦 + 1 ) ) | |
| 135 | simp2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ ) | |
| 136 | simp1 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) | |
| 137 | 0red | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 0 ∈ ℝ ) | |
| 138 | 48 | 3ad2ant2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 − 1 ) ∈ ℝ ) |
| 139 | 76 | 3ad2ant1 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℝ ) |
| 140 | nnm1ge0 | ⊢ ( 𝑚 ∈ ℕ → 0 ≤ ( 𝑚 − 1 ) ) | |
| 141 | 140 | 3ad2ant2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 0 ≤ ( 𝑚 − 1 ) ) |
| 142 | 46 | 3ad2ant2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ∈ ℝ ) |
| 143 | 1red | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 1 ∈ ℝ ) | |
| 144 | 142 143 139 | ltsubaddd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( ( 𝑚 − 1 ) < 𝑦 ↔ 𝑚 < ( 𝑦 + 1 ) ) ) |
| 145 | 134 144 | mpbird | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 − 1 ) < 𝑦 ) |
| 146 | 137 138 139 141 145 | lelttrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 0 < 𝑦 ) |
| 147 | 146 | gt0ne0d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ≠ 0 ) |
| 148 | elnnne0 | ⊢ ( 𝑦 ∈ ℕ ↔ ( 𝑦 ∈ ℕ0 ∧ 𝑦 ≠ 0 ) ) | |
| 149 | 136 147 148 | sylanbrc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ ) |
| 150 | nnleltp1 | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑚 ≤ 𝑦 ↔ 𝑚 < ( 𝑦 + 1 ) ) ) | |
| 151 | 135 149 150 | syl2anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ↔ 𝑚 < ( 𝑦 + 1 ) ) ) |
| 152 | 134 151 | mpbird | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ≤ 𝑦 ) |
| 153 | 131 132 133 152 | syl3anc | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ≤ 𝑦 ) |
| 154 | elnn0 | ⊢ ( 𝑚 ∈ ℕ0 ↔ ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) | |
| 155 | 154 | biimpi | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) |
| 156 | 155 | orcomd | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 = 0 ∨ 𝑚 ∈ ℕ ) ) |
| 157 | 156 | 3ad2ant2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 = 0 ∨ 𝑚 ∈ ℕ ) ) |
| 158 | 130 153 157 | mpjaodan | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ≤ 𝑦 ) |
| 159 | 158 | orcd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 160 | 123 124 125 159 | syl3anc | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 161 | simpr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 = ( 𝑦 + 1 ) ) | |
| 162 | 161 | olcd | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 163 | simp3 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ≤ ( 𝑦 + 1 ) ) | |
| 164 | 17 | 3ad2ant2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ∈ ℝ ) |
| 165 | 76 | 3ad2ant1 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑦 ∈ ℝ ) |
| 166 | 1red | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 1 ∈ ℝ ) | |
| 167 | 165 166 | readdcld | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 168 | 164 167 | leloed | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ ( 𝑦 + 1 ) ↔ ( 𝑚 < ( 𝑦 + 1 ) ∨ 𝑚 = ( 𝑦 + 1 ) ) ) ) |
| 169 | 163 168 | mpbid | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 < ( 𝑦 + 1 ) ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 170 | 160 162 169 | mpjaodan | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 171 | 121 34 122 170 | syl3anc | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 172 | 36 120 171 | mpjaod | ⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 173 | 172 | exp31 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) → ( 𝑚 ∈ ℕ0 → ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 174 | 32 173 | ralrimi | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 175 | 174 | ex | ⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 176 | 4 7 10 13 29 175 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 177 | 176 | ancri | ⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ∧ 𝑁 ∈ ℕ0 ) ) |
| 178 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 179 | 178 | leidd | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁 ) |
| 180 | breq1 | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁 ) ) | |
| 181 | fveq2 | ⊢ ( 𝑚 = 𝑁 → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 𝑁 ) ) | |
| 182 | 181 | eleq1d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ↔ ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) ) |
| 183 | 180 182 | imbi12d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑁 ≤ 𝑁 → ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) ) ) |
| 184 | 183 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑁 → ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) ) |
| 185 | 177 179 184 | sylc | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) |