This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltp1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| divgt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mulgt1d.3 | ⊢ ( 𝜑 → 1 < 𝐴 ) | ||
| mulgt1d.4 | ⊢ ( 𝜑 → 1 < 𝐵 ) | ||
| Assertion | mulgt1d | ⊢ ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | divgt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mulgt1d.3 | ⊢ ( 𝜑 → 1 < 𝐴 ) | |
| 4 | mulgt1d.4 | ⊢ ( 𝜑 → 1 < 𝐵 ) | |
| 5 | mulgt1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 1 < 𝐴 ∧ 1 < 𝐵 ) ) → 1 < ( 𝐴 · 𝐵 ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) ) |