This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive B <_ ( volA ) , there is a measurable subset of A whose volume is B . (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volivth | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐴 ∈ dom vol ) | |
| 2 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → -∞ ∈ ℝ* ) |
| 4 | iccssxr | ⊢ ( 0 [,] ( vol ‘ 𝐴 ) ) ⊆ ℝ* | |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) | |
| 6 | 4 5 | sselid | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 𝐵 ∈ ℝ* ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 ∈ ℝ* ) |
| 8 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 9 | volf | ⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) | |
| 10 | 9 | ffvelcdmi | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 11 | 8 10 | sselid | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
| 14 | 0xr | ⊢ 0 ∈ ℝ* | |
| 15 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ ( vol ‘ 𝐴 ) ∈ ℝ* ) → ( 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ ( vol ‘ 𝐴 ) ) ) ) | |
| 16 | 14 12 15 | sylancr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ ( vol ‘ 𝐴 ) ) ) ) |
| 17 | 5 16 | mpbid | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ ( vol ‘ 𝐴 ) ) ) |
| 18 | 17 | simp2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 0 ≤ 𝐵 ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 0 ≤ 𝐵 ) |
| 20 | mnflt0 | ⊢ -∞ < 0 | |
| 21 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ 𝐵 ) → -∞ < 𝐵 ) ) | |
| 22 | 20 21 | mpani | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 ≤ 𝐵 → -∞ < 𝐵 ) ) |
| 23 | 2 14 22 | mp3an12 | ⊢ ( 𝐵 ∈ ℝ* → ( 0 ≤ 𝐵 → -∞ < 𝐵 ) ) |
| 24 | 7 19 23 | sylc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → -∞ < 𝐵 ) |
| 25 | simpr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 < ( vol ‘ 𝐴 ) ) | |
| 26 | xrre2 | ⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( vol ‘ 𝐴 ) ∈ ℝ* ) ∧ ( -∞ < 𝐵 ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ) → 𝐵 ∈ ℝ ) | |
| 27 | 3 7 13 24 25 26 | syl32anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 28 | volsup2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) | |
| 29 | 1 27 25 28 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
| 30 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 31 | 30 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝑛 ∈ ℝ ) |
| 32 | 31 | renegcld | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 ∈ ℝ ) |
| 33 | 27 | adantr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ∈ ℝ ) |
| 34 | 0red | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 0 ∈ ℝ ) | |
| 35 | nngt0 | ⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) | |
| 36 | 35 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 0 < 𝑛 ) |
| 37 | 31 | lt0neg2d | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 0 < 𝑛 ↔ - 𝑛 < 0 ) ) |
| 38 | 36 37 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 < 0 ) |
| 39 | 32 34 31 38 36 | lttrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 < 𝑛 ) |
| 40 | iccssre | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) | |
| 41 | 32 31 40 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
| 42 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 43 | ssid | ⊢ ℂ ⊆ ℂ | |
| 44 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) ) | |
| 45 | 42 43 44 | mp2an | ⊢ ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) |
| 46 | 1 | adantr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐴 ∈ dom vol ) |
| 47 | eqid | ⊢ ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) | |
| 48 | 47 | volcn | ⊢ ( ( 𝐴 ∈ dom vol ∧ - 𝑛 ∈ ℝ ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℝ ) ) |
| 49 | 46 32 48 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℝ ) ) |
| 50 | 45 49 | sselid | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 51 | 41 | sselda | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑢 ∈ ( - 𝑛 [,] 𝑛 ) ) → 𝑢 ∈ ℝ ) |
| 52 | cncff | ⊢ ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℝ ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) : ℝ ⟶ ℝ ) | |
| 53 | 49 52 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) : ℝ ⟶ ℝ ) |
| 54 | 53 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑢 ∈ ℝ ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑢 ) ∈ ℝ ) |
| 55 | 51 54 | syldan | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑢 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑢 ) ∈ ℝ ) |
| 56 | oveq2 | ⊢ ( 𝑦 = - 𝑛 → ( - 𝑛 [,] 𝑦 ) = ( - 𝑛 [,] - 𝑛 ) ) | |
| 57 | 56 | ineq2d | ⊢ ( 𝑦 = - 𝑛 → ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) = ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) |
| 58 | 57 | fveq2d | ⊢ ( 𝑦 = - 𝑛 → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
| 59 | fvex | ⊢ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ∈ V | |
| 60 | 58 47 59 | fvmpt | ⊢ ( - 𝑛 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
| 61 | 32 60 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
| 62 | inss2 | ⊢ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ ( - 𝑛 [,] - 𝑛 ) | |
| 63 | 32 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 ∈ ℝ* ) |
| 64 | iccid | ⊢ ( - 𝑛 ∈ ℝ* → ( - 𝑛 [,] - 𝑛 ) = { - 𝑛 } ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( - 𝑛 [,] - 𝑛 ) = { - 𝑛 } ) |
| 66 | 62 65 | sseqtrid | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ { - 𝑛 } ) |
| 67 | 32 | snssd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → { - 𝑛 } ⊆ ℝ ) |
| 68 | 66 67 | sstrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ ℝ ) |
| 69 | ovolsn | ⊢ ( - 𝑛 ∈ ℝ → ( vol* ‘ { - 𝑛 } ) = 0 ) | |
| 70 | 32 69 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol* ‘ { - 𝑛 } ) = 0 ) |
| 71 | ovolssnul | ⊢ ( ( ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ { - 𝑛 } ∧ { - 𝑛 } ⊆ ℝ ∧ ( vol* ‘ { - 𝑛 } ) = 0 ) → ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = 0 ) | |
| 72 | 66 67 70 71 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = 0 ) |
| 73 | nulmbl | ⊢ ( ( ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = 0 ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ∈ dom vol ) | |
| 74 | 68 72 73 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ∈ dom vol ) |
| 75 | mblvol | ⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) | |
| 76 | 74 75 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
| 77 | 61 76 72 | 3eqtrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) = 0 ) |
| 78 | 19 | adantr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 0 ≤ 𝐵 ) |
| 79 | 77 78 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) ≤ 𝐵 ) |
| 80 | 7 | adantr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ∈ ℝ* ) |
| 81 | iccmbl | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) | |
| 82 | 32 31 81 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
| 83 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol ) | |
| 84 | 46 82 83 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol ) |
| 85 | 9 | ffvelcdmi | ⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 86 | 8 85 | sselid | ⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ℝ* ) |
| 87 | 84 86 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ℝ* ) |
| 88 | simprr | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) | |
| 89 | 80 87 88 | xrltled | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ≤ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
| 90 | oveq2 | ⊢ ( 𝑦 = 𝑛 → ( - 𝑛 [,] 𝑦 ) = ( - 𝑛 [,] 𝑛 ) ) | |
| 91 | 90 | ineq2d | ⊢ ( 𝑦 = 𝑛 → ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) = ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) |
| 92 | 91 | fveq2d | ⊢ ( 𝑦 = 𝑛 → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
| 93 | fvex | ⊢ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ V | |
| 94 | 92 47 93 | fvmpt | ⊢ ( 𝑛 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
| 95 | 31 94 | syl | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
| 96 | 89 95 | breqtrrd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ≤ ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) ) |
| 97 | 79 96 | jca | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) ) ) |
| 98 | 32 31 33 39 41 50 55 97 | ivthle | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ∃ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 ) |
| 99 | 41 | sselda | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → 𝑧 ∈ ℝ ) |
| 100 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( - 𝑛 [,] 𝑦 ) = ( - 𝑛 [,] 𝑧 ) ) | |
| 101 | 100 | ineq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) |
| 102 | 101 | fveq2d | ⊢ ( 𝑦 = 𝑧 → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ) |
| 103 | fvex | ⊢ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ∈ V | |
| 104 | 102 47 103 | fvmpt | ⊢ ( 𝑧 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ) |
| 105 | 99 104 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ) |
| 106 | 105 | eqeq1d | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 ↔ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) |
| 107 | 46 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → 𝐴 ∈ dom vol ) |
| 108 | 32 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → - 𝑛 ∈ ℝ ) |
| 109 | 99 | adantrr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 110 | iccmbl | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - 𝑛 [,] 𝑧 ) ∈ dom vol ) | |
| 111 | 108 109 110 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( - 𝑛 [,] 𝑧 ) ∈ dom vol ) |
| 112 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( - 𝑛 [,] 𝑧 ) ∈ dom vol ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ∈ dom vol ) | |
| 113 | 107 111 112 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ∈ dom vol ) |
| 114 | inss1 | ⊢ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 | |
| 115 | 114 | a1i | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ) |
| 116 | simprr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) | |
| 117 | sseq1 | ⊢ ( 𝑥 = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ) ) | |
| 118 | fveqeq2 | ⊢ ( 𝑥 = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) → ( ( vol ‘ 𝑥 ) = 𝐵 ↔ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) | |
| 119 | 117 118 | anbi12d | ⊢ ( 𝑥 = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ↔ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) ) |
| 120 | 119 | rspcev | ⊢ ( ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ∈ dom vol ∧ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
| 121 | 113 115 116 120 | syl12anc | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
| 122 | 121 | expr | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) ) |
| 123 | 106 122 | sylbid | ⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) ) |
| 124 | 123 | rexlimdva | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ∃ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) ) |
| 125 | 98 124 | mpd | ⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
| 126 | 29 125 | rexlimddv | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
| 127 | simpll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → 𝐴 ∈ dom vol ) | |
| 128 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 129 | 128 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → 𝐴 ⊆ 𝐴 ) |
| 130 | simpr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → 𝐵 = ( vol ‘ 𝐴 ) ) | |
| 131 | 130 | eqcomd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → ( vol ‘ 𝐴 ) = 𝐵 ) |
| 132 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 133 | fveqeq2 | ⊢ ( 𝑥 = 𝐴 → ( ( vol ‘ 𝑥 ) = 𝐵 ↔ ( vol ‘ 𝐴 ) = 𝐵 ) ) | |
| 134 | 132 133 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ ( vol ‘ 𝐴 ) = 𝐵 ) ) ) |
| 135 | 134 | rspcev | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐴 ⊆ 𝐴 ∧ ( vol ‘ 𝐴 ) = 𝐵 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
| 136 | 127 129 131 135 | syl12anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
| 137 | 17 | simp3d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 𝐵 ≤ ( vol ‘ 𝐴 ) ) |
| 138 | xrleloe | ⊢ ( ( 𝐵 ∈ ℝ* ∧ ( vol ‘ 𝐴 ) ∈ ℝ* ) → ( 𝐵 ≤ ( vol ‘ 𝐴 ) ↔ ( 𝐵 < ( vol ‘ 𝐴 ) ∨ 𝐵 = ( vol ‘ 𝐴 ) ) ) ) | |
| 139 | 6 12 138 | syl2anc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 ≤ ( vol ‘ 𝐴 ) ↔ ( 𝐵 < ( vol ‘ 𝐴 ) ∨ 𝐵 = ( vol ‘ 𝐴 ) ) ) ) |
| 140 | 137 139 | mpbid | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 < ( vol ‘ 𝐴 ) ∨ 𝐵 = ( vol ‘ 𝐴 ) ) ) |
| 141 | 126 136 140 | mpjaodan | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |